
by Stefano Zammattio
ARC International

O ver the last few years, the number of
vendors offering configurable
processors has grown considerably.

Although the benefits of configuring
peripheral intellectual property (IP) mod-
ules are clear, is the same true of config-
uring the processor, the very heart of the
embedded system?

With fixed processors, developers
attempting to hit performance and cost tar-
gets are limited to boosting performance by
simply changing processors or increasing
the clock frequency. These tend to be poor
solutions because they usually involve sig-
nificant increases in power consumption,
cost and difficulty implementing the final
silicon. With configurable processors,
developers have more options, since they
can tailor processor performance or system
configuration to meet the needs of the
application by modifying the IP.

Development tools have also matured,
allowing more in-depth analyses of system
and processor performance and thus a
better means of identifying the causes of
performance problems. A configurable
processor lets designers directly address
specific performance issues, whereas with

a fixed processor they are limited to
designing around them. Consequently,
many developers are beginning to try out
this new technology. Those who have
already tested it often discover that real
performance gains are possible.

Performance: A Multi-Stage Pipe
The performance of an embedded

system can be visualized as a multi-stage
pipe, where each stage can restrict the
application for a specific reason, some-
times leading to unexpected limitations in
system performance (Figure 1). For

Processors with configurable architectures and instruction sets, along
with a new generation of tools, offer developers new opportunities to
fine-tune system bottlenecks.

Configurable Processors Offer
More Ways to Improve System
Cost and Performance

Configurable Processors
SpecialReport

15September 2002

Performance

Instruction Set Clock Speed

Instruction Set Architecture,
Hardware Design / Implementation

‘C’ Compiler Implementation,
Application code (assembler)

Cache Architecture,
Local Memory, Peripheral I/O

Cache Architecture,
System Architecture, Peripheral I/O

Memory Speed / Implementation,
Cache size and type,

Peripheral I/O

Software Efficiency

Intermediate Data I/O

Data Output

 Instruction Fetch Data Fetch

An embedded system can be portrayed as a multi-stage pipe where each stage can
limit the system’s overall performance.

Figure 1

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

SpecialReport

example, a combination of the memory
fetch latency, cache size and type, and
peripheral I/O implementation can place a
heavy load on the system/memory bus,
limiting the performance of the processor,
and therefore of the system.

Developers commonly estimate perfor-
mance load on the system/memory bus by
simply adding peripheral bandwidth to that
required by processor data and instruction
fetches. This would seem to be a straight-
forward calculation. However, the required
processor bandwidth is, in fact, not easy to

determine because cache behavior is diffi-
cult to predict. Such prediction is especially
difficult if most of the application code has
been developed using a compiler. This
problem can be exacerbated by the code’s
heavy use of functions and intermediate I/O,
such as stack operations and the storage of
global and intermediate data values in
memory. The combination of a slow clock
speed and an instruction set that is relatively
ineffective in terms of the needs of the appli-
cation will result in a system that is limited
by the processing power of the CPU.

The system’s software efficiency can
also be hampered by an ineffective com-
piler. This is not always an obvious issue,
since effectiveness varies tremendously
with the application, coding style and
processor architecture. Coding in assem-
bler is an easy solution to this problem, but
then the limitation becomes the pro-
grammer’s ability to develop fast, robust
code in the time available.

In addition to these factors, an
embedded system may have real-time I/O
or processing requirements. Whether these
are met through the use of an RTOS or not,
there will always be a certain amount of
overhead involved in stopping and
restarting the system to service the real-
time requirement.

Performance Increases with
Configurable Processors

The primary benefit of configurable
processors is that the “width” of the per-
formance pipe can be changed at any stage.
This flexibility lets developers tweak their
systems to alleviate system bottlenecks
and deliver much higher performance than
is normally obtainable using a fixed

16 September 2002

50 60 70 80 90 100

% processor performance required to play MP3 audio

I=2k 1way 8LL, no D

I=2k 2 way 32LL, no D

I=32K 1 way 16LL, no D

I=32K 1 way 16LL, D=2K 2 way 16LL

I=32K 1 way 16LL, D=16k 2 way 16LL

Decoding MP3 with different processor cache configurations can result in significant
variation in processing power requirements.

Figure 2

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

SpecialReport

processor. Two different examples will be
discussed here: improving the perfor-
mance of a well-constrained application
(an MP3 decoder) by varying cache para-
meters; and optimizing performance of an
application that relies heavily on a single
algorithm (the Data Encryption Standard,
or DES) by the generation of a custom
instruction.

The goal of the first project was to
reduce system cost by minimizing cache
size without affecting performance. This
was achieved by evaluating system perfor-
mance with a range of different cache con-
figurations.

The code was written primarily in
assembler, and had a relatively straightfor-
ward data I/O requirement. One would
therefore expect that the cache configura-
tion would make little difference, as long
as the caches were large enough. But, as
shown in Figure 2, even in this apparently
simple case, cache configuration can make
a difference of more than 20% in perfor-
mance. Profiling an MP3 decoder takes
many processor cycles, so a cycle-accurate
model of the processor was used to gen-
erate the data. Results were also confirmed

by running the same application in an
FPGA implementation.

In the case of a system coded in highly
structured C, with a much larger number of
stack and global operations, it becomes
very difficult to predict the cache’s optimal
configuration. With a fixed processor, the
developer’s choices about cache sizes are
limited. However, with a configurable
processor there is a full range of choices,
including no cache at all. Thus, the devel-
oper gains control over cache configura-
tion, as well as having additional
alternatives for changing the processor’s
I/O characteristics. For example, the
ARCtangent has a second, separately
addressable region known as auxiliary
space, which can be used to alleviate the
load on bandwidth by diverting data flow
away from the system bus. In an MP3
player, the data output can be streamed to
auxiliary registers, hence removing a 44-
kHz memory bandwidth requirement from
the system bus.

Demonstrating that the addition of
custom instructions to a configurable
processor can greatly improve its applica-
tion-specific performance was the goal of

the second project. The DES algorithm,
used heavily in network applications, fre-
quently repeats a function known as the S-
box. This function is awkward to
implement with the standard logical and
numerical operations of fixed processor
instruction sets, but is well suited to hard-
ware acceleration.

The effect of implementing the S-box
in a custom instruction was a reduction of
the system load required for Internet
Security Protocol (IPSec) encryption and
decryption. Such optimization could either
free up resources for other tasks without
increasing clock frequency, or allow the
processor to run at a lower clock frequency
in order to simplify system design, cut
costs without sacrificing performance and
reduce power consumption.

A DES acceleration instruction incor-
porating the S-box function was built and
integrated into a configurable processor.
IPSec protocol code and software develop-
ment and analysis tools were then used to
compare the performance of the processor
before and after customization. The reduc-
tion in the number of processor cycles
required for the S-box function resulted in

17September 2002

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

SpecialReport

an overall performance increase of 91.8x
for Triple DES (Figure 3).

Most algorithms can be accelerated in a
similar manner by the implementation of
custom instructions. Figure 3 also shows
other examples of code acceleration using
custom instructions. The algorithms shown
are those used by the Embedded

Microprocessor Benchmarking Consortium
(EEMBC) benchmarks suite.

A secondary, but important, benefit of
such optimization is that the code required
for the accelerated function is often
reduced, since much of it is replaced by a
single instruction. For example, the DES
algorithm code size was reduced by 63%,

from 6.5 K to 2.5 K. Reduced code size
can lead to significant cost savings for the
developer.

Naturally, all of these modifications
add extra work to the development and
verification phases of the project. In each
project there will be unique tradeoffs
between working around the limitations of
a fixed processor versus the effort involved
in customization. However, many devel-
opers aren’t yet able to assess the benefits
of one approach over the other, since the
use of configurable processors is still rela-
tively new, and because such judgments
can only be done on a case-by-case basis
by project designers with experience in
both methodologies.

As developers become increasingly
aware that it is system performance—not
just processor performance—which mat-
ters, they are demanding more powerful
tools and techniques for profiling the sys-
tems they design. EDA tool and IP vendors
are addressing these demands in several
ways. Cycle-accurate C models of many IP
modules are now available so that
designers can simulate their systems
entirely in software. In addition, HDL sim-
ulators are increasing in power, allowing
developers to simulate the actual hardware
they have designed. These simulators also
have open interfaces so that software
debuggers can be connected directly to the
HDL system simulation.

These same open interfaces are also
used by co-simulation tools to allow HDL
simulators to interact with other systems,
for example, a cycle-accurate C model.
This produces a hybrid system model in
which large complex blocks, such as
processors, are modeled in C while the
hardware being designed and its system
configuration are modeled in HDL simula-
tion. The benefit of this is that developers
can leverage the speed of the cycle-accu-
rate C model while retaining the accuracy
and visibility of the HDL simulation.
Without this it would simply not be pos-
sible to debug large hardware/software
systems in a reasonable amount of time.

A range of different tool technologies
is now available that lets developers profile
their system’s performance and gather
much more information about perfor-
mance limitations long before the manu-
facturing phase (Figure 4). Each tool has a
specific place in the development process.

18 September 2002

841x

212x

174x

91.8x

61.6x

47.4x

24.1x

20.4x

16.3x

1 10 100 1,000 10,000

Performance increase factor

Convolutional Encoder

RGB to YIQ conversion

Grayscale image filter

Triple DES

RGB to CMYK conversion

Autocorrelation

Bit Allocation

FFT

Viterbi

Al
go

rit
hm

The performance of a configurable processor can be greatly increased by imple-
menting custom instructions.

Figure 3

Instruction Set
Simulator

Cycle Accurate
Simulator

Co-Simulator

FPGA

Production
Silicon

HDL Simulator

Profile
Application

Configure
Hardware

Create/
Modify

Software

During design, developers can use a range of different tools to profile system performance.Figure 4

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

SpecialReport

At the very beginning of the design flow,
for example, the instruction set simulator
will be used. Later on, a co-simulation tool
may be more suitable. Being able to quan-
tify performance limitations as early as
possible in the product design cycle avoids
the disaster of having to go back to the
drawing board, especially after first silicon
returns from manufacturing.

Instead, this information can be used to
tailor the design during product develop-
ment to ensure that performance targets
will be met. With a fixed processor, this
can be extremely difficult to achieve. Since
the processor is a fixed unit, a major
restructuring of the rest of the system
and/or the software may be required.
Simply increasing the clock frequency is a
poor solution, because it increases power
consumption and makes the final silicon
implementation more difficult. Developers
have more options for solving these prob-
lems when the processor performance or
system configuration can be modified to
meet the needs of the product.

It is clear that significant benefits can
be obtained from the use of configurable
processors, but developers need to
become more familiar with the types of
potential solutions that these processors
can offer and the development effort
required to implement them. Clearly,
judgment calls must be made in weighing
the tradeoffs of the amount of effort
involved to work around fixed processor
core issues against the amount of effort
required to customize the processor. Such
tradeoffs are highly specific to the appli-
cation and system design. As with all new
technologies, it will take time for devel-
opers to fully understand the implications
of processor configurability so that they
can leverage the technology to their best
advantage.

One of the main reasons that devel-
opers still choose fixed IP is legacy.
However, as system requirements continue
to outgrow the capabilities of the fixed
processor implementations on which they
are based, it seems natural for developers
to choose a configurable processor tech-
nology, even if they don’t intend to take
advantage of its configurability in the first
version of the product. Using the processor
as a fixed core in the first product genera-
tion can give them time to learn about and
understand the technology. Then, at some

point during that first version, or in a sub-
sequent product revision, developers can
modify the processor and/or the system to
give the boost in performance that is usu-
ally required for the product’s next genera-
tion, without changing the processor and
tool chain involved.

ARC International
Elstree, UK.
(+44) 208-236-2800.
[www.arc.com].

21September 2002

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

Configurable Processors
SpecialReport

22 September 2002

by Clay Johnson
Xillinx

A fter years of playing the essential
“early ASIC-prototype” role, field-
programmable gate arrays (FPGAs)

are ushering in a new era of system design.
Today’s high-density FPGAs have evolved
to encompass the key requirements to be
the optimal technology for System-on-
Chip (SoC) product applications. FPGAs
can also be called Programmable Logic
Devices or PLDs, however when and
where a device is programmed is an impor-
tant cost and functional distinction in
defining this new era of design.

Market pressures continue to force
evolution in design methodology. Such

pressures make it essential to integrate all
of a products’ digital electronics into a
single SoC. The SoC design methodology,
and its implied IP modularity, has become
the preferred industry design standard. The
popularity of SoC methodology is pri-
marily due to increased design complexity
that pushes the average design to 30 mil-
lion gates and beyond.

SoCs Ramp-Up Capabilities
SoCs designed using field-program-

mable technology offer an advantage in
meeting rapid time-to-market and time-in-
market requirements, already displacing

standard-cell ASICs and tra-
ditional MOS gate arrays in
telecommunications and net-
working applications. FPGA
and PLD manufacturers con-
tinue to push the system-level
integration envelope. They’re
doing so in terms of perfor-
mance—raw clock speed and
hard macros, in terms of
advanced connectivity with
high-speed serial I/Os), and
lower costs. They’re also
easing the design process by
integrating push-button intel-
lectual property (IP) compo-
nents (Figure 1). This
combination of features helps
further minimize early
product development risk and
better meets aggressive

product introduction schedules—key
advantages in today’s changing markets.

The rapidly developing trend favoring
programmable logic has not escaped the
notice of traditional pure-play ASIC manu-
facturers. LSI Logic was one of the first
ASIC manufacturers to attempt to add pro-
grammable logic to its ASIC technology. LSI
assisted in technology development with a
now out-of-business startup called Adaptive
Silicon. LSI lost interest after it became
apparent that its demonstration product
implemented in its 0.18-micron technology
didn’t generate money-paying interest.

Other ASIC vendors are undeterred by
past failures and are increasing efforts to
add some level of programmability to their
ASIC products. NEC announced its ISSP
Modular Array ASIC, and Hitachi seems to
be on track with Triscend-based SoC
development. More recently, the two
leaders in their respective fields, IBM and
Xilinx, solidified its long-term partnership
by announcing its XBlue FGPA fabric for
IBM’s ASIC-based products. Yet another
new partnership was announced by
Infineon and Actel to further develop
Actel’s ProASIC FPGA technology in
Infineon’s next-generation sub-100
nanometer silicon technology.

Proven Role For Prototyping
Most ASIC engineers are experienced

with using FPGAs in prototype platforms.
It’s the only way to successfully start the
time-consuming system software develop-

Once relegated to prototyping duties, FPGAs are changing the
landscape of system-level chip design.

FPGAs Enable New Era of
System Design

On-chip resources like Xilinx’s ChipScope
Analyzer core let users create software- or IP-
specific debug tools as required.

Figure 1

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

SpecialReport

ment process. Frequently, software devel-
opment is the critical path, consuming the
majority of resources—another big reason
why modular SoC design methodology has
become an industry standard (Figure 2).

Large networking and telecommunica-
tion OEMs are prolific users of program-
mable logic. OEM designers use FPGAs to
overcome the impact of rapidly changing
requirements and standards. Experienced
designers, who have participated in suc-
cessful design projects, know there isn’t a
better design “risk-management plan” than
having key components implemented in
FPGAs. The use of programmable logic
makes it easy to track changing standards,

fix bugs and optimize performance.
Silicon manufacturers and OEMs look

toward a more flexible SoC design to
improve their time–to-market and time-in-
market. Flexible, effective use and reuse of
IP seems to be the new mantra and the best
way to close the design-productivity gap that
results from increasingly larger and more
complex designs.

Lowering cost, or lowering the total
cost-of-ownership is a recurring theme
these days. At July’s Metro Optical Net-
working Forum the cost-of-ownership issue
and adaptability to changing standards were
emphasized in many presentations and
keynote speeches. The experts agreed that

the industry had to cooperate more on
reducing time-to-market and developing
systems that would rapidly adapt to change.

The selective use of FPGAs or FPGA
fabric will enable the dynamic reconfigura-
tion of IP for rapid optimization to a partic-
ular application. The in-field programming
aspect of FPGAs is the major attraction in
using these devices. Modular Array ASICs
that are programmed during device fabrica-
tion or one-time-programmable (OTP)
PLDs do not significantly lower total cost-
of-ownership—entire boards or systems
would need to be replaced in order to
upgrade hardware or add services.

24 September 2002

Manufacturer
Family Device

Xilinx
Virtex-II Pro
2VP1125

Xilinx
Virtex II
XC2V10000

Altera
Stratix
EP1S120-(2H03)
EP1S80-(3Q02)

Altera
Excalibur
EXP2A90

Altera
APEX II
EP2A90

Lattice
ispXPGA
1200

Lattice
ORCA
Series 4

Actel
Axcelerator
AX2000 Q402

Actel
ProASIC+
APA 1000

Quicklogic
Eclipse
QL6600
QL901M
(MIPS)

System
Gates

10 M

10 M

10 M+

7 M

7 M

1.25 M

899 K

Up to 2 M

1 M

583 K

Total RAM
(bits)

10 M

3.5 M

Up to 10 M

1.5 M +
ARM 922T
core

1.5 M

660 K

552 K
148 Kb
Embedded

339 K

198 K

82,900

Clock Freq
(MHz)

420

420

-

-

-

-

-

500 MHz

-

250

Flip Flops
or LEs

125,136 LCs
plus 4x PPC
cores

122,880

114,140 LEs

-

-

15,376 LUTs

16,192 LUTs

32 K
Antifuse modules
Live at power-up

12 M
flash cells

9,600

Prog.
I/Os

1,200 + 24x
3.125 Mbits/s

1,108

1,314 user
I/Os 116
LVDS links

1,140

1,140

496 user IO
+ 20 pr
SerDes

466

684 user
IO

712

512

Other Blocks
DSP, PLL

28 DSP Blks
(556 18x18
Mults)

28 DSP Blocks
(224 9x9
Mults)

On-chip
E2 cells

64 bit
per pin
FIFO

Process
Tech (m)

0.13

0.18

0.13

0.15

0.15

0.15

0.15

0.15

0.15

0.25

Metal
Layers

8

8

8

8

8

8

8

7 L

8

5

Voltage

1.5 V

1.5 V

1.5 V

1.5 V

1.5 V

1.5 V

1.5 V

1.5 V

1.5 V

2.5 V

The five leading FPGA vendors are Xilinx, Altera, Lattice, Actel and Quicklogic. The table lists the features and
capabilities of these vendors’ newest and most promising programmable logic.

Table 1

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

SpecialReport

Adaptable Computer Systems:
Holy Grail

The entertainment industry provides
countless fictional examples of self-
healing or self-building computer systems
as the ultimate implementation of Artificial
Intelligence (AI). Fully adaptable com-
puter systems are actually a reality today
empowered by the hardware and software
programmability possible in today’s
processor-equipped FPGA devices. A good
example of “adaptable systems” is the
push within the Metro Optical Networking
market to create multiservice provisioning
platforms (MSPP)—a single MSPP is
easily configured to integrate new value-
added services. Hybrid FPGA and ASIC
devices enable the creation of just-in-time
adaptable computer systems. Successful
hybrid devices are either ASICs with
FPGA fabric or FPGAs that implement
specific functions using traditional ASIC
technology.

Telco carriers demand equipment that’s
easy to configure for new added-value ser-
vices. To serve such needs FPGA and ASIC
technologies are likely to merge in next-gen-
eration chip products. The goal is to bring the

high-integration
capability and
low-cost aspect
of ASIC devices
together with the
ability to make
late hardware
design changes.
Telco carriers and
service providers
have already suc-
cessfully incorpo-
rated such field
“software and
hardware” up-
grade capabilities
into many sys-
tems. Lucent for example promotes its Smart
Upgrade capability as a means to allow in-ser-
vice software and hardware upgrades as a
way to minimize service disruptions.

Wafers Near a Cost/Yield
Collision Point

The driving force behind FPGA’s
appeal is simple economics. The biggest
economic impact results from a “one-two”
punch: the move to 300 mm or 12-inch

wafers and substantially higher mask costs
of sub-100 nanometer silicon technology.
The chip industry’s move from 130
nanometer to 90 nanometer silicon tech-
nology has created a compelling need for
ASIC and ASSP vendors to look at new
methods to minimize risk and maximize
cost-effective silicon fabrication.

A key future issue is risk management.
The number of die at risk in a single fabri-
cation run increases dramatically when 300

27September 2002

Software development is often the critical path, consuming the
majority of resources. FPGAs make those efforts easier by
supporting a highly iterative system design process.

Figure 2

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

SpecialReport

mm wafers are employed—about 2.25x the
area of a 200 mm wafer-size and a 27 per-
cent smaller individual die size from 130
nm to 90 nm. New cost-effective wafer fab-
rication requirements move cost-effective
unit volume numbers even higher, and
potentially beyond the range of all but the
highest volume or fully proven applications.

Looking at FPGA technology as the
solution to the cost/yield issue makes
sense. A single ASSP, without program-

mable capability and with a fixed feature
set, must have its total cost amortized on a
per version basis—the fixed function
ASSP must target a specific high-volume
application for it to remain cost competi-
tive. ASIC development costs increased
dramatically with the introduction of 90-
nanometer silicon technology—million-
dollar mask sets—and is only part of the
story. Many applications are highly inte-
grated and more complex designs inher-

ently have higher risk of design error. Late
design cycle changes and schedule exten-
sions will often make the difference in a
product’s ultimate success or failure.

The use of embedded core-based
FPGA technology to implement unproven
logic in a complex ASIC or ASSP design
can in many cases guarantee shippable first
silicon. It would also enable application-
specific optimization that is essential for
product differentiation of designs based on
the same ASSP. Appling the right ASIC
intellectual property to a large FPGA can
provide the ultimate programmable and
configurable device. This solution may
meet performance requirements of larger
and more complex designs at little or no
increase in device cost.

FPGA and ASSP Examples
The five leading FPGA vendors, in

order, are, Xilinx, Altera, Lattice, Actel and
Quicklogic. Table 1 lists the features and
capabilities of these vendors’ newest and
most promising programmable logic. The
devices from the two leading program-
mable logic device or FPGA vendors,
Xilinx and Altera, are most promising due
to the larger number of devices per family.
These vendors have new hybrid
ASIC/FPGA devices that provide more
than 10 million ASIC system gates com-
posed of processor cores, memory, data
path and DSP elements, programmable
logic gates, and programmable connec-
tivity. The prospect of reconfiguring
processor software and entire processing
fabrics in the field provides unprecedented
application and product flexibility.

Current FPGA hybrid devices have
implemented PowerPC, ARM and MIPS
processor cores. The breadth of soft proces-
sors is growing with both Altera and Xilinx
supporting multiple versions of
MicroBlaze, PicoBlaze and Nios cores. The
new FPGAs also can be used to embed DSP
building blocks capable of configuring var-
ious width multipliers. Standard supported
multipliers are 9 x 9, 18 x 18, and 36 x 36.
These standard multiplier configurations
deliver up to 800 billion multiply-accumu-
late operations (MACs) per second. That’s
more than enough to tackle digital video,
embedded computing and broadband wire-
less applications. In comparison to this
capability, the fastest DSP only reaches
about 8.8 billion MACs per second.

28 September 2002

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

SpecialReport

Connectivity is King
It wasn’t too long ago that FPGAs

struggled to meet PCI signal timing
requirements easily achieved using stan-
dard ASIC technology. FPGAs have taken
the lead over ASICs in supporting new I/O
standards like PCI Express and RapidIO.
The I/O pin count of the largest FPGAs
exceeds 1000 pins of user I/O that is highly
programmable. Programmable User I/O in
FPGAs supports over 20 state-of-the-art
I/O standards such as PCI, PCI-X, PCI
Express, Serial and Parallel RapidIO,
HyperTransport and a number of low
voltage differential signaling (LVDS) stan-
dards. Newer serial I/O standards provide
unparalleled connectivity.

FPGA IP now spans three forms: soft,
firm and hard macros. An FPGA soft
macro is a synthesizable HDL description
of a functional component that can usually
target FPGAs, ASICs, or MOS GAs.
Previously, HDL components optimized
for FPGAs were incompatible with ASIC
design flows. Now, HDL coded for ASICs
may need only a few minor “tweaks” to be
FPGA-optimized. The advantage of soft
cores is that their HDL code is “technology
independent”, meaning it can target just
about any FPGA or ASIC design flow.

For its part Altera allows its Nios soft-
processor core to be retargeted using ASIC
design flows. Nios is a RISC-based config-
urable and scaleable processor that offers a
16-bit instruction set and 16-/32-bit data-
path. The newest version of the Nios core
can be implemented on an Altera APEX
20K or Stratix device. An example of a firm
macro is an HDLdesign file that implements
a specific function, like a RapidIO interface,
in the FPGA or programmable fabric.
Examples of hard macros are the hard 405-
based PowerPC processor core imple-
mented in Xilinx’s Virtex-II Pro family or
the hard 922T-based ARM core imple-
mented in Altera’s Excalibur family.

Actel
Sunnyvale, CA.
(408) 739-1010.
[www.actel.com].

Altera
San Jose, CA.
(408)544-7000.
[www.altera.com].

Lattice Semiconductor
Hillsboro, OR.
(503) 268-8000.
[www.latticesemi.com].

QuickLogic
Sunnyvale, CA.
(408) 990-4000.
[www.quicklogic.com].

Xilinx
San Jose, CA.
(408) 559-7778.
[www.xilinx.com].

31September 2002

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

