
BASICSof
FPGAs Design

A Supplement to Electronic Design/December 4, 2003 Sponsored by Mentor Graphics Corp.

F
ield-programmable gate arrays
(FPGAs) arrived in 1984 as an
alternative to programmable
logic devices (PLDs) and ASICs.
As their name implies, FPGAs

offer the significant benefit of being readily
programmable. Unlike their forebearers in
the PLD category, FPGAs can (in most cas-
es) be programmed again and again, giving
designers multiple opportunities to tweak their circuits.

There’s no large non-recurring engineering (NRE) cost
associated with FPGAs. In addition, lengthy, nerve-
wracking waits for mask-making operations are
squashed. Often, with FPGA development, logic design
begins to resemble software design due to the many itera-
tions of a given design. Innovative design often happens
with FPGAs as an implementation platform.

But there are some downsides to FPGAs as well. The
economics of FPGAs force designers to balance their rel-
atively high piece-part pricing compared to ASICs with
the absence of high NREs and long development cycles.
They’re also available only in fixed sizes, which matters
when you’re determined to avoid unused silicon area. 

What are FPGAs?
FPGAs fill a gap between discrete logic and the smaller
PLDs on the low end of the complexity scale and costly
custom ASICs on the high end. They consist of an array
of logic blocks that are configured using software. Pro-
grammable I/O blocks surround these logic blocks. Both
are connected by programmable interconnects (Fig. 1).
The programming technology in an FPGA determines the
type of basic logic cell and the interconnect scheme. In
turn, the logic cells and interconnection scheme deter-
mine the design of the input and output circuits as well as

the programming scheme. 
Just a few years ago, the largest FPGA was measured

in tens of thousands of system gates and operated at 40
MHz. Older FPGAs often cost more than $150 for the
most advanced parts at the time. Today, however, FPGAs
offer millions of gates of logic capacity, operate at 300
MHz, can cost less than $10, and offer  integrated func-
tions like processors and memory (Table 1).

FPGAs offer all of the features needed to imple-
ment most complex designs. Clock management
is facilitated by on-chip PLL (phase-locked loop)
or DLL (delay-locked loop) circuitry. Dedicated

memory blocks can be configured as basic single-port
RAMs, ROMs, FIFOs, or CAMs. Data processing, as
embodied in the devices’ logic fabric, varies widely. The
ability to link the FPGA with backplanes, high-speed bus-
es, and memories is afforded by support for various single-
ended and differential I/O standards. Also found on
today’s FPGAs are system-building resources such as high-
speed serial I/Os, arithmetic modules, embedded proces-
sors, and large amounts of memory.

Initially seen as a vehicle for rapid prototyping and
emulation systems, FPGAs have spread into a host of
applications. They were once too simple, and too costly,
for anything but small-volume production. Now, with the
advent of much larger devices and declining per-part costs,

Tradeoffs Abound 
in FPGA Design

Understanding device
types and design flows

is key to getting the 
most out of FPGAs

David Maliniak, Electronic Design Automation Editor



Sponsored by Mentor Graphics Inc.

FPGAs are finding their way off the prototyping bench and
into production (Table 2).

Comparing FPGA Architectures
FPGAs must be programmed by users to connect the chip’s
resources in the appropriate manner to implement the
desired functionality. Over the years, various technologies
have emerged to suit different requirements. Some FPGAs
can only be pro-
grammed once. These
devices employ anti-
fuse technology.
Flash-based devices
can be programmed
and reprogrammed
again after debug-
ging. Still others can
be dynamically pro-
grammed thanks to
SRAM-based technol-
ogy. Each has its
advantages and disad-
vantages (Table 3).

Most mod-
ern
FPGAs
are

based on SRAM con-
figuration cells, which
offer the benefit of
unlimited reprogram-
mability. When pow-
ered up, they can be
configured to perform
a given task, such as a

board or system test, and then reprogrammed to perform
their main task. On the flip side, though, SRAM-based
FPGAs must be reconfigured each time their host system is
powered up, and additional external circuitry is required to
do so. Further, because the configuration file used to pro-
gram the FPGA is stored in external memory, security issues
concerning intellectual property emerge.

Antifuse-based FPGAs aren’t in-system programmable,

1.Do concentrate on I/O timing, not
just the register-to-register internal frequency that
the FPGA place-and-route tools report. Frequently,
the hardest challenge in a complete FPGA design is

the I/O timing. Focus on how your signals enter and
leave your FPGA, because that’s where the bottlenecks frequently occur.
2. Do create hierarchy around vendor-specific structures and
instantiations. Give yourself the freedom to migrate from one technology to
another by ensuring that each instantiation of a vendor-specific element is
in a separate hierarchical block. This applies especially to RAMs and clock-
management blocks.
3. Do use IP timing models during synthesis to give the true pic-
ture of your design. By importing EDIF netlists of pre-synthesized blocks,
your synthesis tool can fully understand your timing requirements. Be cau-
tious when using vendor cores that you can bring into your synthesis tool if
they have no timing model.
4. Do design your hierarchical blocks with registered outputs
where possible to avoid having critical paths pass through many levels of hier-
archy. FPGAs exhibit step-functions in logic-limited performance. When hier-
archy is preserved and the critical path passes across a hierarchical boundary,
you may introduce an extra level of logic. When considered along with the
associated routing, this can add significant delay to your critical path.
5. Do enable retiming in your synthesis tool. FPGAs tend to be reg-
ister-rich architectures. When you correctly constrain your design in synthe-
sis, you allow the tool to optimize your design to take advantage of positive
slack timing within the design. Sometimes this can be done after initial place
and route to improve retiming over wireload estimation.

1. Don’t synthesize unless
you’ve fully and correctly constrained
your design. This includes correct
clock domains, I/O timing require-

ments, multicycle paths, and false
paths. If your synthesis tool doesn’t see exactly what you want, it can’t make
decisions to optimize your design accordingly.
2. Don’t try to fix every timing problem in place and route. Place and
route offers little room for fixing timing where a properly constrained 
synthesis tool would.
3. Don’t vainly floor plan at the RTL or block level hoping to
improve place-and-route results. Manual area placement can cause more
problems than it might initially appear to solve. Unless you are an expert in
manual placement and floorplanning, this is best left alone.
4. Don’t string clock buffers together, create multiple clock
trees from the same clock, or use multiple clocks when a simple enable will
do. Clocking schemes in FPGAs can become very complicated now that there
are PLLs, DLLs, and large numbers of clock-distribution networks. Poor
clocking schemes can lead to extended place-and-route times, failure to
meet timing, and even failure to place in some technologies. Simpler
schemes are vastly more desirable. Avoid those gated clocks, too!
5. Don’t forget to simulate your design blocks as well as your
entire design. Discovering and back-tracking an error from the chip’s pins
during on-board testing can be extremely difficult. On-board FPGA testing
can miss important design flaws that are much easier to identify during sim-
ulation; they can be rectified by modifying the FPGA’s programming.

Do’s And Don’ts For The FPGA Designer  

Table 1: KEY RESOURCES AVAILABLE IN THE LARGEST DEVICES FROM MAJOR FPGA VENDORS

Features

Clock 
management

Embedded 
memory blocks

Data processing

Programmable I/Os

Special features

Xilinx Virtex II Pro

DCM
Up to 12

BlockRAM
Up to 10 Mbits

Configurable logic
blocks and 18-bit by
18-bit multipliers

Up to 125,000 logic
cells and 556 multipli-
er blocks

SelectI/O

Embedded PowerPC
405 cores

RocketI/O multi-giga-
bit transceiver

Altera Stratix

PLL
Up to 12

TriMatrix memory
Up to 10 Mbits

Logic elements and
embedded multipli-
ers

Up to 79,000 LEs and
176 embedded mul-
tipliers

Advanced I/O 
support

DSP blocks

High-speed differ-
ential I/O and inter-
face standards sup-
port

Actel Axcelerator

PLL
Up to 8

Embedded RAM
Up to 338 kbits

Logic modules (C-
Cell and R-Cell)
Up to 10,000 

R-Cells and 21,000
C-Cells

Advanced I/O sup-
port

PerPin FIFOs for
bus applications

Lattice ispXPGA

SysCLOCK PLL
Up to 8

SysMEM blocks
Up to 414 kbits

Based on 
programmable
functional unit

Up to 3844 PFUs

SysI/O

SysHSI for high-
speed serial
interface



but rather are pro-
grammed offline
using a device pro-
grammer. Once the

chip is configured, it can’t be altered. 
However, in antifuse technology, device configuration is non-

volatile with no need for external memory. On top of that, it’s
virtually impossible to reverse-engineer their programming.
They often work as replacements for ASICs in  small volumes.

In a sense, flash-based FPGAs fulfill the promise of FPGAs in
that they can be reprogrammed many times. They’re non-
volatile, retaining their configuration even when powered
down. Programming is done either in-system or with a pro-

grammer. In some cases, IP security can be achieved using a multi-
bit key that locks the configuration data after programming. 

But flash-based FPGAs require extra process steps above and
beyond standard CMOS technology, leaving them at least a gen-
eration behind. Moreover, the many pull-up resistors result in
high static power consumption.

FPGAs can also be characterized as having either fine-, medi-
um-, or coarse-grained architectures. Fine-grained architectures
boast a large number of relatively simple logic blocks. Each logic
block usually contains either a two-input logic function or a 4-to-

1 multiplexer and a flip-flop. Blocks can only be used to imple-
ment simple functions. But fine-grained architectures lend them-
selves to execution of functions that benefit from parallelism.

Coarse-grained architectures consist of relatively large log-
ic blocks often containing two or more lookup tables and
two or more flip-flops. In most of these architectures, a
four-input lookup table (think of it as a 16 x 1 ROM)

implements the actual logic. 

The FPGA design flow
After weighing all implementation options, you must consider
the design flow. The process of implementing a design on an
FPGA can be broken down into several stages, loosely definable
as design entry or capture, synthesis, and place and route (Fig.
2). Along the way, the design is simulated at various levels of
abstraction as in ASIC design. The availability of sophisticated
and coherent tool suites for FPGA design makes them all the
more attractive. 

At one time, design entry was performed in the form of
schematic capture. Most designers have moved over to hardware
description languages (HDLs) for design entry. Some will prefer
a mixture of the two techniques. Schematic-based design-cap-
ture tools gave designers a great deal of control over the physical
placement and partitioning of logic on the device. But it’s
becoming less likely that designers will take that route. Mean-
while, language-based design entry is faster, but often at the
expense of performance or density. 

For many designers, the choice of whether to use schemat-
ic- or HDL-based design entry comes down to their con-
ception of their design. For those who think in software
or algorithmic-like terms, HDLs are the better choice.

HDLs are well suited for highly complex designs, especially when
the designer has a good handle on how the logic must be
structured. They can also be very useful for designing small-
er functions when you haven’t the time or inclination to
work through the actual hardware implementation.

On the other hand, HDLs represent a level of abstraction
that can isolate designers from the details of the hardware
implementation.
Schematic-based entry
gives designers much
more visibility into the
hardware. It’s a better
method for those who
are hardware-oriented.
The downside of
schematic-based entry is
that it makes the design
more difficult to modify
or port to another
FPGA. 

Athird option
for design
entry, state-
machine

entry, works well for
designers who can see
their logic design as a
series of states that the
system steps through. It
shines when designing
somewhat simple func-
tions, often in the area of

system control, that can be
clearly represented in visual
formats. Tool support for finite
state-machine entry is limited,
though. 

Some designers approach
the start of their design from a
level of abstraction higher

than
gram

Modify d

Done!

No

Yes

Achieved
timing?

AchievedAchievedAchieved
timing?timing?timing?

Vendor place and routeVendor place and routeVendor place and routeVendor place and route

A “big picture” look at an FPGA design flow shows th
design entry, synthesis from RTL to gate level, and p
route is done using the FPGA vendors’ proprietary to
devices’ architectures and logic-block structures.

Figure 2
Input/output blocks

Logic blocks

Just about all FPGAs include a regular, programmable, and flexible architecture of logic blocks
surrounded by input/output blocks on the perimeter. These functional blocks are linked together
by a hierarchy of highly versatile programmable interconnects.

Figure 1

Sponsored by Mentor Graphics Inc.

BASICSofDesignFPGAs



consider
n on an
y definable
oute (Fig.
evels of
histicated
all the

m of
o hardware
will prefer
ign-cap-
he physical
it’s

e. Mean-
at the

se schemat-
their con-

n software
choice.

cially when
must be
ning small-
tion to
n.
abstraction
hardware

than HDLs, which is algorithmic design using the C/C++ pro-
gramming languages. A number of EDA vendors have tool flows

supporting this design style. Gen-
erally, algorithmic design has been
thought of as a tool for architec-
tural exploration. But increasingly,
as tool flows emerge for C-level
synthesis, it’s being accepted as a
first step on the road to hardware
implementation.

After design entry, the
design is simulated at
the register-transfer lev-
el (RTL). This is the

first of several simulation stages,
because the design must be simulat-
ed at successive levels of abstrac-
tion as it moves down the chain
toward physical implementation on
the FPGA itself. RTL simulation
offers the highest performance in
terms of speed. As a result, design-
ers can perform many simulation
runs in an effort to refine the logic.
At this stage, FPGA development
isn’t unlike software development.
Signals and variables are observed,
procedures and functions traced,
and breakpoints set. The good
news is that it’s a very fast simula-
tion. But because the design hasn’t
yet been synthesized to gate level,
properties such as timing and
resource usage are still unknowns. 

The next step following RTL

simulation is to convert the
RTL representation of the
design into a bit-stream file
that can be loaded onto the
FPGA. The interim step is
FPGA synthesis, which trans-
lates the VHDL or Verilog code
into a device netlist format that
can be understood by a bit-
stream converter. 

The synthesis process can be
broken down into three steps.
First, the HDL code is convert-
ed into device netlist format.
Then the resulting file is con-
verted into a hexadecimal bit-
stream file, or .bit file. This
step is necessary to change the
list of required devices and
interconnects into hexadecimal
bits to download to the FPGA.
Lastly, the .bit file is down-
loaded to the physical FPGA.
This final step completes the
FPGA synthesis procedure by
programming the design onto
the physical FPGA.

It’s important to fully constrain designs before synthesis (Fig. 3).
A constraint file is an input to the synthesis process just as the
RTL code itself. Constraints can be applied globally or to spe-
cific portions of the design. The synthesis engine uses these

constraints to optimize the netlist. However, it’s equally important
to not over-constrain the design, which will generally result in less-
than-optimal results from the next step in the implementation
process—physical device placement—and interconnect routing.

Synthesis co
This trad

iterations b
have incorp
which autom
across regis
also anticip

Foll
net
int
do

optimizatio
ware partiti
Good partit
and high pe

Increasin
after synthe
work from 
Floorplann
good idea t

After par
to place the
monitors ro
blocks. It m
delays to m
Overall, the
route. 

Function
synthesis an
This step en
After imple
tion step w
placement a
delays are b
netlist for t

Table 2: FPGA USAGE

Time-to-market

Performance

Volume

Emulation: 3%
Fairly high; fast
compile times
Not stringent
Very low per
application

Prototyping: 30%
Fairly high; fast
compile times
Not stringent

Low per application

Preproduction: 30%
Fairly high; fast com-
pile times
Very critical

Moderately high per
application

Production: 37%
Fairly high; fast
compile times
Very critical

High per applica-
tion

Table 3: ADVANTAGES/DISADVANTAGES OF VARIOUS FPGA TECHNOLOGIES

Feature
Reprogrammable?
Reprogramming speed
(including erasure)
Volatile?
External configuration file?
Good for prototyping?
Instant-on?
IP security
Size of configuration cell
Power consumption
Radiation hardness?

SRAM
Yes (in-system)
Fast

Yes
Yes
Yes
No
Poor
Large (six transistors)
High
No

Antifuse
No
Not
applicable
No
No
No
Yes
Very good
Very small
Low
Yes

Flash
Yes (in-system or offline)
3X SRAM

No (but can be if required)
No
Yes
Yes
Very good
Small (two transistors)
Medium
No

Modify design

e!

No

Yes

No-guess
flow

eved
ng?

devedeved
?ng?ng?

e and routed te and routee and route

PGA design flow shows the major steps in the process:
m RTL to gate level, and physical design. Place and

GA vendors’ proprietary tools that account for the
logic-block structures.

HDL files

Constraints

Placement

Routing

FPGA/PLD

Language input (VHDL/Verilog)

Initial optimization

Timing analysis

Timing optimization

VHDL/IP RTL

RTLVerilog/IP

The implementation flow for FPGAs begins with synthesis of the HDL design description into a gate-level n
Accounting for user-defined design constraints on area, power, and speed, the tool performs various optim
tions before creating the netlist that’s passed on to place-and-route tools. 

Figure 3



s-
code
that

n be
ps.
ert-
t.
n-
it-

he

mal
GA.

A.
e
by
to

. 3).
he
pe-

nt
ss-

Synthesis constraints soon become place-and-route constraints. 
This traditional flow will work, but it can lead to numerous

iterations before achieving timing closure. Some EDA vendors
have incorporated more modern physical synthesis techniques,
which automate device re-timing by moving lookup tables (LUTs)
across registers to balance out timing slack. Physical synthesis
also anticipates place and route to leverage delay information. 

Following synthesis, device implementation begins. After
netlist synthesis, the design is automatically converted
into the format supported internally by the FPGA ven-
dor’s place-and-route tools. Design-rule checking and

optimization is performed on the incoming netlist and the soft-
ware partitions the design onto the available logic resources.
Good partitioning is required to achieve high routing completion
and high performance.

Increasingly, FPGA designers are turning to floorplanning
after synthesis and design partitioning. FPGA floorplanners
work from the netlist hierarchy as defined by the RTL coding.
Floorplanning can help if area is tight. When possible, it’s a
good idea to place critical logic in separate blocks. 

After partitioning and floorplanning, the placement tool tries
to place the logic blocks to achieve efficient routing. The tool
monitors routing length and track congestion while placing the
blocks. It may also track the absolute path
delays to meet the user’s timing constraints.
Overall, the process mimics PCB place and
route. 

Functional simulation is performed after
synthesis and before physical implementation.
This step ensures correct logic functionality.
After implementation, there’s a final verifica-
tion step with full timing information. After
placement and routing, the logic and routing
delays are back-annotated to the gate-level
netlist for this final simulation. At this point,

simulation is a much
longer process, because
timing is also a factor (Fig.
4). Often, designers substi-
tute static timing analysis
for timing simulation. Stat-
ic timing analysis calcu-
lates the timing of combi-
national paths between
registers and compares it
against the designer’s tim-
ing constraints. 

Once the design is
successfully veri-
fied and found
to meet timing, the final step is to

actually program the FPGA itself. At the
completion of placement and routing, a bina-
ry programming file is created. It’s used to
configure the device. No matter what the
device’s underlying technology, the FPGA
interconnect fabric has cells that configure it
to connect to the inputs and outputs of the
logic blocks. In turn, the cells configure those
logic blocks to each other. Most programma-
ble-logic technologies, including the PROMs
for SRAM-based FPGAs, require some sort

of a device programmer. Devices can also be programmed
through their configuration ports using a set of dedicated pins. 

Modern FPGAs also incorporate a JTAG port that,
happily, can be used for more than boundary-scan
testing. The JTAG port can be connected to the
device’s internal SRAM configuration-cell shift reg-

ister, which in turn can be instructed to connect to the chip’s
JTAG scan chain. 

If you’ve gotten this far with your design, chances are you
have a finished FPGA. There’s one more step to the process,
however, which is to attach the device to a printed-circuit board
in a system. The appearance of 10-Gbit/s serial transmitters, or
I/Os, on the chip, coupled with packages containing as many as
1500 pins, makes the interface between the FPGA and its intend-
ed system board a very sticky issue. All too often, an FPGA is
soldered to a pc board and it doesn’t function as expected or,
worse, it doesn’t function at all. That can be the result of errors
caused by manual placement of all those pins, not to mention
the board-level timing issues created by a complex FPGA. 

More than ever, designers must strongly consider an integrat-
ed flow that takes them from conception of the FPGA through
board design. Such flows maintain complete connectivity
between the system-level design and the FPGA; they also do so

between design iterations. Not only do today’s integrated FPGA-
to-board flows create the schematic connectivity needed for veri-
fication and layout of the board, but they also document which
signal connections are made to which device pins and how these
map to the original board-level bus structures. 

Integrated flows for FPGAs make sense in general, consider-
ing that FPGA vendors will continue to introduce more com-
plex, powerful, and economical devices over time. An inte-
grated third-party flow makes it easier to re-target a design

to different technologies from different vendors as conditions
warrant. 

De
sig

n

RTL

RTL

iption into a gate-level netlist.
ol performs various optimiza-

FPGA
RTL design

Testbench

HDL simulator

Synthesis

FPGA gate
library

Place and route

FPGA simulation occurs at various stages of the design process: after RTL design, after synthesis, and once again
after implementation. The latter is a final gate-level check, accounting for actual logic and interconnect delays,
of logic functionality. 

Figure 4

BASICSofDesignFPGAs


