
You can use linear-feedback shift registers (LFSRs) as alterna-
tives to conventional bi-nary counters (Reference 1). An
LFSR reduces the amount of required logic and minimizes
routing complexity. A possible disadvantage is that the count
sequence is not the normal binary increment or decrement
sequence. An LFSR counter, in effect, implements a binary
polynomial generator. These generators find common use for
pseudorandom-number generation. This article provides
some guidelines for implementing LFSR-based counters.
Some general points include

● An LFSR with n flip-flops can implement only a (2n–1)-
state counter. The all-zeros state is normally not allowed

because the counter
locks up.

● Good design practice
demands a reset condi-
tion that provides start-
up in a known condi-
tion and also ensures
that the counter does
not power up in a zero
condition and stay
locked up.

● The choice of the poly-
nomial used should
ensure 2n–1 states—with
no repeated states; such
a polynomial is known
as a “primitive,” or max-
imal-length polynomi-
al.

To implement a counter
with a divide ratio other
than 2n–1, you must first
select a primitive polynomi-
al that has the proper degree. The degree, or power of two,
must be large enough to allow the desired number range. As
an example, a divide-by-35 counter must use a polynomial of
the sixth degree (yielding 26–1=63 possible states). You can
typically find primitive polynomials in tables in textbooks
that deal with testing and pseudorandom numbers. The val-
ues in Table 1 derive from Reference 2.

The values in Table 1 are the exponents of terms in prim-
itive binary polynomials. The numbers listed represent the
smallest number of terms for a primitive polynomial of each
degree. For example, the entry 12: 7 4 3 0 represents the poly-
nomial x12+x7+x4+x3+1. Once you select a polynomial, you
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LFSR counters implement
binary polynomial generators

LFSR counters make ideal pseudorandom-
number generators, but make sure to provide

a reset function to prevent lockup.

EDN DESIGN FEATURE

To implement an x4+x+1-polynomial LFSR counter, you have
the choice of a “many-to-one” configuration (a) or a “one-to-
many” configuration (b).
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1: 0

2: 1 0

3: 1 0

4: 1 0

5: 2 0

6: 1 0

7: 1 0

8: 6 5 1 0

9: 4 0

10: 3 0

11: 2 0

12: 7 4 3 0

13: 4 3 1 0

14: 12 11 1 0

15: 1 0

16: 5 3 2 0

TABLE 1—EXPONENTS FOR
PRIMITIVE POLYNOMIALS



first implement a counter for just that polynomial. As a
design example, assume you need a divide-by-12 counter.
From Table 1, you select the fourth-degree polynomial
(x4+x+1) because it allows as many as 15 possible states.

You can implement the polynomial in logic as either a
“many-to-one” (Figure 1a) or a “one-to-many” (Figure 1b)
design. Note that, although either approach implements the
same polynomial, the count sequences differ. At this point,
you should add a synchronous reset to the design to force an
all-ones condition at reset.

Figure 2a shows the one-to-many design example.
Through simulation, you can observe the count sequence
and verify that the selected polynomial repeats after 2n–1
states (in this case, 15 states) and that no state repeats with-
in each sequence. Table 2 gives the sequence for this exam-
ple.

To complete the counter design, you can decode the
desired final count and force the normal sequence to trun-
cate back to the reset condition. For the divide-by-12 exam-
ple, you decode state 12, in which the count value equals two
hex. Figure 2b shows the reset-modification hardware. 
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State Value (hex)

1 F

2 E

3 7

4 A

5 5

6 B

7 C

8 6

9 3

10 8

11 4

12 2 (decode to force a reset)

13 1

14 9

15 D

TABLE 2—SEQUENCE FOR
DIVIDE-BY-12 COUNTER

EDN DESIGN FEATURE

A synchronous reset forces an all-ones condition on reset in a divide-by-12 counter
(a); decoding circuitry (b) forces the sequence to truncate back to the reset condi-
tion.
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LFSR COUNTERS
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