
Put the functions of a legacy microprocessor into a Xilinx FPGA.Put the functions of a legacy microprocessor into a Xilinx FPGA.

00 Xcell Journal Winter 2004

by Lance Roman
President
Roman-Jones, Inc.
rj@traverse.com

Brad Fayette
Senior Software Engineer
Roman-Jones, Inc.
rj@traverse.com

Emulate 8051 Microprocessor
in PicoBlaze IP Core

Emulate 8051 Microprocessor
in PicoBlaze IP Core

How do you put a one-dollar Intel™ 8051
microprocessor into an FPGA without
using 10 dollars’ worth of FPGA fabric?

The answer is emulation. Using soft-
ware emulation, Roman-Jones Inc. has
developed a new type of 8051 processor
core built on a Xilinx 8-bit, soft-core
PicoBlaze™ (PB) processor. This “new”
PB8051 is more than 70% smaller than
competing soft-core implementations –
without sacrificing any of the performance
of this legacy part. The PB8051 is a Xilinx
AllianceCORE™ microprocessor built
through emulation.

The Legacy of the 8051
The Intel 8051 family of microprocessors
– probably one of the most popular archi-
tectures around – is still the core of many
embedded applications. This processor
just refuses to retire. Many designers are
using legacy code from previous projects,
while others are actually writing new code.

The 8051 architecture was designed for
ASIC fabric. It is not efficient in an
FPGA, resulting in excess logic usage with
marginal performance.

FPGA microprocessor integration is a
solution for older 8051 products undergo-
ing redesign to eliminate obsolesce, lower
costs, decrease component count, and
increase overall performance.

The new FPGA-embedded PB8051
designs allow you to take advantage of
existing in-house software tools and your
own architecture familiarity to quickly
implement a finished design. The inte-
grated PB8051 can be customized on the
FPGA to exact requirements.

Processor Emulation
Programmers have used microprocessor
emulation for many years as a software
development vehicle. It allows program-
mers to write and test code on a develop-
ment platform before testing on target
hardware.

This same concept can be practical
when the target microprocessor architec-
ture does not lend itself to efficient imple-
mentation and use of FPGA resources.

The features of our PB8051 emulated
processor include:

type core. Hook up block RAM or
off-chip program ROM, and you’re
ready to go.

• Low Cost – The PB8051 is $495
with an easy Xilinx SignOnce IP
license.

Architecture of Emulated 8051
As shown in Figure 1, the architecture of an
emulated processor has several elements.
Each element is designed independently,
but together, they act as a whole.

PicoBlaze Platform
The PicoBlaze host processor is the heart
of the emulated system and defines the
architecture of the PB8051 emulated
processor core. It comprises:

• PicoBlaze Code ROM – Block ROM
contains the software code to emulate
8051 instructions.

• Internal Address/Bus – The PicoBlaze
peripheral bus is a 256-byte address
space accessed by PicoBlaze I/O
instructions. It allows the PicoBlaze
processor to interface with RAM,
emulation peripherals, timers, and the
serial port. This bus is internal to the
core and thus hidden from the user.

• Emulation Peripherals – Not all emu-
lation tasks can be done in software
and still meet the performance
requirements for your particular
application. Specialized hardware
assists the PicoBlaze code to perform
tasks that are time-consuming, on a
critical execution path, or both.

A good example is the parity bit in the
PSW (program status word) register that
reflects 8051 accumulator parity. This
function must be performed for every
8051 instruction executed, and would
take several PicoBlaze instruction cycles
to perform. It is, therefore, done in
hardware.

• Instruction Decode ROM – This is a
key emulation peripheral that is used
to decode 8051 instructions to set
PicoBlaze routine locations and emu-
lation parameters.

• Smaller Size – Traditional 8051
implementations range from 1,100
to 1,600 slices of FPGA logic. The
PicoBlaze 8051 processor requires
just 76 slices. Emulation hardware
requires 77 slices. Add another 158
slices for two timers and a four-mode
serial port, and you have a total of a
311 slices. This is a reduction of
more than two-thirds of the FPGA
fabric of competing products.

• Faster – At 1.3 million instructions
per second (MIPS), the PB8051 is
faster than a legacy 8051 (1 MIPS)
running at 12 MHz. Compare this to
5 MIPS with a 40 MHz Dallas version
or 8 MIPS with a traditional FPGA

implementation – which takes up
more than three times as much FPGA
fabric as the PB8051. The PicoBlaze
processor itself runs at a remarkable 40
MIPS using an 80 MHz clock.

• Software Friendly – You can write C
code or assembler code with your
present software development tools to
generate programs. You can also run
legacy objects out of a 27C512
EPROM.

• Easy Hardware – You can use VHDL
or Verilog™ hardware description
languages to instantiate the 8051-

Winterl 2004 Xcell Journal 00

This “new” PB8051

is more than 70%

smaller than

competing soft-core

implementations –

without sacrificing

any of the performance

of this legacy part.

• Address Decode – A significant
amount of the emulation peripheral
hardware is dedicated to simple
address decode of the PicoBlaze
peripheral bus. This address space is
for the PicoBlaze processor only and is
insulated from the 8051 application.

• Block RAM – 256 bytes are available
to 8051 internal RAM and some 8051
registers. You can access this block
RAM via 8051 instructions.

• Serial Port and Timer – The actual
8051 timer and multi-mode serial port
were best done in hardware instead of
trying to implement these functions in
software. Clock prescaling inputs are
provided so that these functions can
run at a clock rate independent of the
emulated system.

PicoBlaze Emulation Software
A 1K x 16 block ROM holds the PicoBlaze
code that performs the actual emulation. The
emulation program is carefully constructed

in very tight PicoBlaze assembler code, opti-
mized for speed and efficiency.

The emulation program is divided into
several segments:

• Instruction Fetch – An 8051 bus cycle
is simulated to fetch the next instruc-
tion from 8051 program memory (64
Kb size), which may be on-chip block
RAM or off-chip EPROM (such as the
27C256).

• Instruction Decode – Fetched instruc-
tions are decoded to determine the
addressing mode and operation.

• Fetch Operands – Depending upon
the addressing mode, additional
operands are fetched for the instruc-
tion from program memory, internal
RAM, or external RAM.

• Instruction Execution – An instruction
performs the desired operation and
updates emulated register contents,
including affected 8051 PSW flags.

• Scan Interrupts – This function deter-
mines if an interrupt is pending, and if
so, services it. An interrupt window is
generated at the end of every emulated
instruction when required.

In addition to PicoBlaze code, Java™
software utilities process symbols taken
from PicoBlaze listings (.LOG files) into a
ROM table. These .LOG files are used to
decode 8051 opcodes.

This program also produces the .COE
files used by the Xilinx CORE
Generator™ system to create PicoBlaze
code ROM. All of this is transparent to
designers integrating with the PB8051.

User Back-End Interface
What gives the PB8051 its “hardware
flavor” is the user back-end interface,
where you interface your logic design
with the emulated 8051 processor. The
back-end interface is part of the emula-
tion peripherals, controlled by the
PicoBlaze platform.

00 Xcell Journal Winter 2004

1K x 16
Block ROM
Emulation

Program Code

256 x 8
Instruction

Decode ROM

PicoBlaze

256 x 8
Block RAM

Serial Port

Internal
Address/Data

Bus

Timer

Address
Decode

8051
Emulation

Peripherals

Address
SERIAL0_PRE12

SERIAL2_PRE32

TIME_PRE

CLK

WR

RST_8051

RD

PSEN

INSTR_FETCH

EXT_BUS_START

EXT_BUS_HOLD

P1_IN[7:0]

P1_OUT[7:0]

P3_IN[7:0]

P3_OUT[7:0]

EXT_DATA_IN[7:0]

EXT_DATA_OUT[7:0]

EXT_ADDRESS[15:0]

ROM_ADDRESS[15:0]

ROM_DATA[7:0]

RST

Data

Interrupt

Address Decode, Data, Signals

Address Decode, Data, Signals

Figure 1 – PB8051 block diagram

Just as the 8051 processor family has
many derivatives to define port, function-
ality, features, and pinout, the back-end
interface serves the same function. The
PB8051 has a back-end interface that
resembles the generic 8031, the ROM-less
version of the 8051.

Roman-Jones Inc. customizes back-end
interfaces to meet your exact 8051 needs,
such as removing an unused serial port or
adding an I2C port to emulate the 80C652
derivative.

Designing with the PB8051
Incorporating the PB8051 into the rest of
your design is easy, because it comes with ref-
erence designs and examples of Xilinx inte-
grated software design (ISE) projects.

Hardware Considerations
Figure 1 illustrates the signal names avail-
able on the user back-end interface. A
VHDL or Verilog template provides the
exact signal names – many of which are
already familiar to 8051 designers. A few
new types of signals exist, including:

• Pre-scales used by the timer and serial
port to set counting and baud rates.

• One-clock-wide read/write strobes to
read and write external memory space.
There is also a program store enable
(PSEN) strobe for the 8051 code
memory.

• Bus start and hold signals used to
insert wait states for external memory
cycles that cannot be completed in one
system clock cycle.

The PB8051 is instantiated as a compo-
nent into your top-level design. You deter-
mine if the 8051 program resides in
on-chip block RAM or off-chip EPROM.
Peripherals can be hooked up to either the
P1/P3 port lines or to the external address
and data buses. For convenience, the
address and data lines for program and data
memory spaces are separated, so conven-

tional multiplexer circuitry is not needed.
If your entire design, including the 8051

program, resides on the FPGA, simply set
the EXT_BUS_HOLD to “low” to take full
advantage of running at clock speed. If you
elect to use an off-chip EPROM or have
slow peripherals, wait states can be inserted
by asserting EXT_BUS_HOLD at “high.”
One of our reference designs illustrates wait
state generation.

Xilinx Implementation Considerations
There are few implementation considera-
tions other than the need to place the
PB8051 design netlist into your project
directory and instantiate it as a compo-
nent in your VHDL or Verilog design;
ISE software will do the rest. ISE schemat-
ic capture is also supported.

Simulation Considerations
We’ve included a behavior simulation
model of the PB8051 for adding (along
with the rest of your design) to your favorite
simulator. Modeltech and Aldec™ simula-
tors have been tested for correct operation.
Post place-and-route or timing simulations
follow a conventional design flow.

You will enjoy watching your 8051
instruction execution flow go by on the
simulation waveforms. This makes behav-
ioral debugging straightforward, fast, and
easy. We’ve provided a reference test
bench with example waveform files.

8051 Software Considerations
To generate your 8051 programs the way
you always have, use your favorite C com-
piler or assembler and linker (if necessary) to
produce the same Intel hex format file that
you would use to burn an EPROM. You can
even use an existing hex file, because the
PB8051 looks like a regular 8051 as far as
software code is concerned. An Intel hex to
.COE utility is included for those designs
that put the 8051 software into on-chip
block RAM. On-chip program storage pro-
vides maximum speed performance.

Test and Debug Considerations
We recommend you use design tools to
quickly and easily test and debug your design.
The most useful tool will be an HDL simula-
tor, such as Modeltech or Aldec programs.
Most problems and bugs can be solved at the
behavioral level. For interactive debugging,
the Xilinx ChipScope™ integrated logic ana-
lyzer has proved to be the tool of choice. At
the current time, no source code debugger
tools are available for the PB8051.

Designer’s Learning Curve
Designers should have some experience in
8051 hardware/software and FPGA design
before attempting to consolidate the two.
The PB8051 core is designed for ease of
use and integration.

Your 8051 hardware and software
expertise should include hardware under-
standing of the part and experience in writ-
ing 8051 code using software development
tools. The basic design flow using the
PB8051 is identical to the normal pack-
aged processor flow.

Integrating the PB8051 onto the Xilinx
part is much the same as instantiating a core
using the Xilinx CORE Generator tool. If
you are familiar with VHDL or Verilog lan-
guage, and have a couple of Xilinx designs
under your belt, you’re good to go.

Conclusion
Integrating microprocessors onto FPGAs
through emulation, as illustrated with the
PB8051, is a viable alternative to a full hard-
ware functional design. The advantage of
FPGA fabric savings correlates to reduced
parts cost.

Integrating the PB8051 processor
into your design yields lower component
count, easier board debugging, less
noise, and optimum performance
of the peripheral/8051 micro-interface,
because both are in an FPGA. For more
information about the PB8051 microcon-
troller, visit www.roman-jones.com/rj2/
PB8051Microcontroller.htm.

Winter 2004 Xcell Journal 00

What gives the PB8051 its “hardware flavor” is the user back-end interface,
where you interface your logic design with the emulated 8051 processor.

