Department of Electrical and Computer Engineering

Question 1

Using Boolean algebra, minimize the following function:
a) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{ABCD}+(\mathrm{ABD}){ }^{\prime}+\mathrm{ABC}^{\prime} \mathrm{D}$
b) Given $f(x, y, z)=x y+x z^{\prime}+y z$
i) Implement f in NOR-NOR format
ii) Implement f in AND-OR-INVERT format

Obtain optimum implementation.

Question 2

Design a combinational circuit decoder that examines a BCD digit and displays a letter "L" if the digit was less than or equal 5. Use the Display unit shown below. Implement the circuit using minimum 2*1 MUXes.

Question 3

a) Design a Half Subtractor.
b) Design a Full Subtractor using two Half Subtractors.
c) Using two $4^{*} 1$ multiplexers implement the Full Subtractor

Question 4

Design a BCD adder that adds two BCD digits and produces a sum digit in BCD. You may use 4-bit binary adders for your design. Give the circuit diagram.

Question 5

Design a sequential circuit with two JK flip flops A \& B and two inputs E \& F . If $\mathrm{E}=0$, the circuit remains in the same state regardless of the value of F . When $\mathrm{E}=1$ and $\mathrm{F}=1$, the circuit goes through the state transition from 00 to 01 to 10 to 11 , back to 00 and repeats. When $\mathrm{E}=1$ and $\mathrm{F}=0$, the circuit goes through the state transitions from 00 to 11 , to 10 to 01 , back to 00 and repeats.

Question 6

Analyze the circuit below fully. Derive the Transition Table, Excitation Table, State Diagram and the Output. Explain the function of the circuit.

SOLUTION

COEN312, DEC4 2008

Q1.
a.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}) \quad=\mathrm{ABCD}+(\mathrm{ABD})^{\prime}+\mathrm{ABC} \mathrm{C}^{\prime} \mathrm{D}$
$=\mathrm{ABD}\left(\mathrm{C}+\mathrm{C}^{\prime}\right)+(\mathrm{ABD})^{\prime}=\mathrm{ABD}+(\mathrm{ABD})^{\prime}=1$
OR
$=\mathrm{ABCD}+(\mathrm{ABD})^{\prime}+\mathrm{ABC}^{\prime} \mathrm{D}$
$=B C D+A^{\prime}+B^{\prime}+D^{\prime}+B C^{\prime} D$
$=C D+A^{\prime}+B^{\prime}+D^{\prime}+C^{\prime} D$
$=C+A^{\prime}+B^{\prime}+D^{\prime}+C^{\prime} D$
$=A^{\prime}+B^{\prime}+D^{\prime}+C+D$
$=1$
b.
$\begin{aligned} \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \quad & =x y^{\prime}+x z^{\prime}+\mathrm{yz} \\ & =x y\left(z^{\prime}+z^{\prime}\right)+x z^{\prime}+y z \\ & =x y z^{+} x y^{\prime}+x z^{\prime}+y z \\ & =x z^{\prime}+y z\end{aligned}$
i)

$$
\begin{aligned}
& \mathrm{f}=(\mathrm{x}+\mathrm{z}) \cdot\left(\mathrm{y}+\mathrm{z}^{\prime}\right)
\end{aligned}
$$

ii)

$\mathrm{f}=$	$\mathrm{Z} \backslash \mathrm{XY}$	00	01	11	10
	0	1	1	0	0
	1	1	0	0	1
$\mathrm{f}=\left(\mathrm{x}^{\prime} \mathrm{z}^{\prime}\right)+\left(\mathrm{y}^{\prime} \mathrm{z}\right)$					

Q2.
Segments 'beg' has to be on in order to have ' L ' on the seven-segments display.

	A	B	C	D		a	b	c	d	e	f	g
0	0	0	0	0		0	1	0	0	1	0	1
1	0	0	0	1		0	1	0	0	1	0	1
2	0	0	1	0		0	1	0	0	1	0	1
3	0	0	1	1		0	1	0	0	1	0	1
4	0	1	0	0		0	1	0	0	1	0	1
5	0	1	0	1		0	1	0	0	1	0	1
6	0	1	1	0		0	0	0	0	0	0	0
7	0	1	1	1		0	0	0	0	0	0	0
8	1	0	0	0		0	0	0	0	0	0	0
9	1	0	0	1		0	0	0	0	0	0	0

$\mathrm{a}=\mathrm{c}=\mathrm{d}=\mathrm{f}=0$
$\mathrm{b}=\mathrm{e}=\mathrm{g}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}$
$=\mathrm{A}^{\prime}\left(\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)$
$\mathrm{f}=\quad \mathrm{AB} \backslash \mathrm{CD} \quad 00 \quad 01 \quad 11 \quad 10$
00
01
11
10

1	1	1	1
1	1	0	0
X	X	X	X
0	0	0	X

Q3.

a.	For the half-subtractor,				b.	For the full-subtractor,				
	a	b	D	B		a	b	B	D	B
	0	0	0	0		0	0	0	0	0
	0	1	1	1		0	0	1	1	1
	1	0	1	0		0	1	0	1	1
	1	1	0	0		0	1	1	0	1
						1	0	0	1	0
						1	0	1	0	0
						1	1	0	0	0
						1	1	1	1	1
$\begin{aligned} & D=(a \oplus b) \\ & B=\bar{a} b \end{aligned}$										

The K-map tables give:
$\mathrm{D}=$

b_\ab	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$D=\left(a \oplus b \oplus b_{-}\right)$

$B=$	b_\ab	00	01	11	10
	0	0	1	0	0
	1	1	1	1	0
$D=\bar{a} b$ $=\bar{a} b+b$	${ }_{-}^{\overline{(a \oplus}}$				

Q4.
The algorithm to do binary addition of two BCD numbers, with the result in BCD, involves a binary adder to do the actual arithmetic operation along with another adder to offset the result whenever the binary sum exceeds the BCD range, which is from 0 to 9 . When this happens, the addition is scaled up by 6 . The operation has to take care of the carry-out which will be asserted whenever the BCD range is exceeded or the actual binary addition generates a carry. The Boolean expression for the carry bit is:

$$
C=K+Z_{8} Z_{4}+Z_{8} Z_{2}
$$

Q5.
State Diagram:

State Transition Table:

Present	Next			
Y1 Y0	EF 00	01	10	11
00	00	00	11	01
01	01	01	00	10
10	10	10	01	11
11	11	11	10	00

K-Maps for next state equations:

$\mathrm{Y}_{1}{ }^{+}=$	$y_{1} y_{0} \backslash \mathrm{EF}$	00	01	11	10
	00	0	0	0	1
	01	0	0	1	0
	11	1	1	0	1
	10	1	1	1	0
$Y_{1}^{+}=\bar{E} y_{1}+F y_{1} \bar{y}_{0}+\bar{F} y_{1} y_{0}+E F \bar{y}_{1} y_{0}+E \bar{F} \bar{y}_{1} \bar{y}_{0}$					
$\mathrm{Y}_{0}{ }^{+}=$	$y_{1} y_{0} \backslash E F$	00	01	11	10
	00	0	0	1	1
	01	1	1	0	0
	11	1	1	0	0
	10	0	0	1	1

Q6.
Analysis:
$T_{A}=Q_{A}+Q_{B}$
$T_{B}=\bar{Q}_{A}+Q_{B}$

State transition table:

		CLK		NEXT STATE 2	
Q_{A}	Q_{B}	T_{A}	T_{B}	$\mathrm{Q}_{\mathrm{A}}{ }^{+}$	$\mathrm{Q}_{\mathrm{B}}{ }^{+}$
0	0	0	1	0	1
0	1	1	1	1	0
1	0	1	0	0	0
1	1	1	1	0	0

State diagram:

Outputs are of the state itself.
This circuit is a counter " 00 "->" 01 "->" 10 " and back to " 00 "..., if ever started in " 11 " state, then the next state on the pulse will set state to " 00 ", " 01 " and so on.

