Department of Electrical and Computer Engineering							
COEN 312	Dec.4, 2008						
Answer all Questions.	All questions carry equal marks.						
Exam Duration 3 hour							
No books or papers are allowed.	Examiner: Asim J. Al-Khalili						

Question 1

Using **Boolean algebra**, minimize the following function:

a) F(A,B,C,D) = ABCD + (ABD)' + ABC'D

b) Given f(x,y,z) = xy + xz' + yzi) Implement f in <u>NOR-NOR</u> format ii) Implement f in <u>AND-OR-INVERT</u> format <u>Obtain optimum implementation.</u>

Question 2

Design a combinational circuit decoder that examines a BCD digit and displays a letter "L" if the digit was less than or equal 5. Use the Display unit shown below. Implement the circuit using minimum 2*1 MUXes.

$$\begin{bmatrix} b & \frac{a}{d} & c \\ c & \frac{d}{g} & f \\ \hline g & g \end{bmatrix}$$

Question 3

- a) Design a Half Subtractor.
- b) Design a Full Subtractor using two Half Subtractors.
- c) Using two 4 * 1 multiplexers implement the Full Subtractor

Question 4

Design a BCD adder that adds two BCD digits and produces a sum digit in BCD. You may use 4-bit binary adders for your design. Give the circuit diagram.

Question 5

Design a sequential circuit with two JK flip flops A & B and two inputs E & F. If E=0, the circuit remains in the same state regardless of the value of F. When E=1 and F=1, the circuit goes through the state transition from 00 to 01 to 10 to 11, back to 00 and repeats. When E=1 and F=0, the circuit goes through the state transitions from 00 to 11, to 10 to 01, back to 00 and repeats.

Question 6

Analyze the circuit below fully. Derive the Transition Table, Excitation Table, State Diagram and the Output. Explain the function of the circuit.

SOLUTION COEN312, DEC4 2008

Q1.

a. F(A,B,C,D) = ABCD+(ABD)'+ABC'D= ABD(C+C')+(ABD)'=ABD+(ABD)'=1

OR

=ABCD+(ABD)'+ABC'D =BCD+A'+B'+D'+BC'D =CD+A'+B'+D'+C'D =C+A'+B'+D'+C'D =A'+B'+D'+C+D =1

b.

f(x,y,z) = xy+xz'+yz= xy(z+z')+xz'+yz= xyz+xyz'+xz'+yz= xz'+yz

i)

7

F

Q2.

	А	В	С	D	a	b	с	d	e	f	g
0	0	0	0	0	0	1	0	0	1	0	1
1	0	0	0	1	0	1	0	0	1	0	1
2	0	0	1	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	0	0	1	0	1
4	0	1	0	0	0	1	0	0	1	0	1
5	0	1	0	1	0	1	0	0	1	0	1
6	0	1	1	0	0	0	0	0	0	0	0
7	0	1	1	1	0	0	0	0	0	0	0
8	1	0	0	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	0	0	0	0

Segments 'beg' has to be on in order to have 'L' on the seven-segments display.

a=c=d=f=0 b=e=g =A'B'+A'C' =A'(B'+C')

f=	AB\CD	00	01	11	10
	00	1	1	1	1
	01	1	1	0	0
	11	Х	Х	Х	Х
	10	0	0	0	Х

Q3.

	For the half-subtractor,					For the full-subtractor,						
a.						b.						
	а	b	D	В			a	b	B_	D	В	
	0	0	0	0			0	0	0	0	0	
	0	1	1	1			0	0	1	1	1	
	1	0	1	0			0	1	0	1	1	
	1	1	0	0			0	1	1	0	1	
							1	0	0	1	0	
							1	0	1	0	0	
							1	1	0	0	0	
							1	1	1	1	1	
$D = (a \oplus b)$												
$D = (a \oplus b)$ $B = ab$												

The K-map tables give:

Q4.

The algorithm to do binary addition of two BCD numbers, with the result in BCD, involves a binary adder to do the actual arithmetic operation along with another adder to offset the result whenever the binary sum exceeds the BCD range, which is from 0 to 9. When this happens, the addition is scaled up by 6. The operation has to take care of the carry-out which will be asserted whenever the BCD range is exceeded or the actual binary addition generates a carry. The Boolean expression for the carry bit is:

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

Q5.

State Diagram:

State Transition Table:

Present	Next					
Y1 Y0	EF 00	01	10	11		
00	00	00	11	01		
01	01	01	00	10		
10	10	10	01	11		
11	11	11	10	00		

K-Maps for next state equations:

 $Y_0^{+} = \overline{E}y_0 + E\overline{y}_0$

Q6.

Analysis:

$$T_A = Q_A + Q_B$$
$$T_B = \overline{Q}_A + Q_B$$

State transition table:

		CI	LK	NEXT STATE		
QA	Q _B	T _A	T _B	Q_A^+	Q_B^+	
0	0	0	1	0	1	
0	1	1	1	1	0	
1	0	1	0	0	0	
1	1	1	1	0	0	

State diagram:

Outputs are of the state itself.

This circuit is a counter "00"->"01"->"10" and back to "00"..., if ever started in "11" state, then the next state on the pulse will set state to "00", "01" and so on.