Programmable Logic Devices (PLDs)

PLDs basically store binary information in a volatile/nonvolatile device. Data is specified by designer and physically inserted (Programmed) into the device.

Any Boolean function can be expressed in Sum of Products. SOP. In turn the SOP can be implemented in an AND-OR form.

ROM, PAL, PLA are different optimized implementations of a given circuit using the AND-OR planes.

Programmable Logic Device as a black box

Programming the AND OR Plane

ROM: AND Fixed, OR Programmable
PAL: AND Programmable, OR fixed
PLA: AND Programmable, OR Programmable
FPGA: Programmable Logic Blocks, Programmable Interconnect
Example of programming the AND-OR planes
$f 1(x 1, x 2, x 3)=x 1 . x 2+x 1 . x 3^{\prime}+x 1^{\prime} . x 2^{\prime} . x 3$
$f 2(x 1, x 2, x 3)=x 1 . x 2+x 1^{\prime} . x 2^{\prime} . x 3+x 3$

PLD basic cells:

The number of inputs and outputs are usually high. To avoid drawing all the inputs and outputs all the inputs to a gate is shown with one line only and the actual inputs are are shown as an intersection as shown below

So the previous example after programming will look like this

$$
\begin{aligned}
& f 1(x 1, x 2, x 3)=x 1 \cdot x 2+x 1^{2} \cdot x 3^{\prime} \quad+x 1^{\prime} \cdot x 2^{\prime} \cdot x 3 \\
& f 2(x 1, x 2, x 3)=x 1 \cdot x 2+x 1^{\prime} \cdot x 2^{\prime} \cdot x 3+x 1 x 3
\end{aligned}
$$

Programmable Array Logic (PAL)

In this category of Programmable Logic devices the AND Plane is programmable and the OR Plane is fixed

Previous Example:
$f 1(x 1, x 2, x 3)=x 1 \times 2 \times 3^{\prime}+x 1^{\prime} . x 2 \times 3$
$\mathrm{f} 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)=\mathrm{x} 1^{\prime} . \mathrm{x} 2^{\prime} \quad+\mathrm{x} 1 . \mathrm{x} 2 \mathrm{x} 3$

Programmable Logic Array (PLA)

Both AND-Plane and the OR-Plane are programmable.

Example:

Implement the following functions on a PLA

$$
\left.\begin{array}{l}
\mathrm{F}_{0}=\mathrm{A} \overline{\mathrm{C}}+\mathrm{AB} \\
\mathrm{~F}_{1}=\mathrm{A}+\overline{\mathrm{B}} \overline{\mathrm{C}} \\
\mathrm{~F}_{2}=\overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{AB} \\
\mathrm{~F}_{3}=\overline{\mathrm{B}} \mathrm{C}+\mathrm{A}
\end{array}\right\}
$$

Size of the Device related to:

- cost;
- speed;
- power.

You should choose:

- 3 variable input
- 5 product terms -> 5 AND gates
- 4 outputs -> 4 OR gates
Personality Matrix

Product	Input			Output				
	A	B	C	F 0	F 1	F 2	F 3	
AB	1	1	-	1	-	1	-	
$\overline{\mathrm{B}} \mathrm{C}$	-	0	1	-	-	-	1	
$\mathrm{~A} \overline{\mathrm{C}}$	1	-	0	1	-	-	-	
$\overline{\mathrm{B}} \overline{\mathrm{C}}$	-	0	0	-	1	1	-	
A	1	-	-	-	1	-	1	
	For OR gate programming							

When it is necessary to implement a Finite state machine, then we need a PAL or PLA that has extra circuitry such as a register and a Feedback path, Then the following general circuitry can be added to some of the PLD devices.

Example:

Implement the Finite state Machine given by the following equations on a suitable PAL. The PAL has SR flip Flops. These equations were derived for a particular state machine using SR-Flip Flops.
Excitation Vector:
$S 2=P^{\prime} Q_{1}, \quad R 2=y_{2}, \quad S 1=P^{\prime} Q^{\prime}, \quad R 1=Q+P$
Output:
$Z=y 2 y 1^{\prime} P Q^{\prime}$,
P \& Q - are inputs
$y_{2} \& y_{1}$ are the states
z is the output

Programming the devices:

Programming the PAL

Logic expressions first must be minimized before programming the Pal.
PALs are programmed electrically using binary patterns (as JEDEC ASCII/hexadecimal files) and by using electronic programming device from a certain manufacturer such as Data I/O Corporation's Model 60A Logic Programmer.

User circuits are implemented in the programmable devices by configuring or programming these devices. Due to the large number of programmable switches in commercial chips; it is not feasible to specify manually the desired programming state for each switch. CAD systems are used to solve this problem.

Computer system that runs the CAD tools is connected to a programming unit.
After design of a circuit has been completed, CAD tool generates a file (programming file or fuse map) that specifies the state of each switch in PLD. PLD is then placed into the programming unit and the programming file is transferred from the computer system to the unit. Programming unit then programs each switch individually.

Most General of all PLDs is the FPGA or Field Programmable Gate Arrays, where, both cells of combinational logic and the routing can be programmed. Current FPGA's are available in 10 nm technology having millions of gates.

Prices range from $\$ 500 \$ 1000$

So all you need is a Personal computer, PLD CAD tool, The programming device and its software and the kind of PLD that the device accepts.
Tutorial for PAL can be found at
http://courses.cs.washington.edu/courses/cse370/06au/tutorials/Tutorial_PAL.htm

Schematic of an FPGA is shown below.

Example:

Design a PLA, PAL and ROM at a gate level to realize the following sum of product functions:
$X(A, B, C)=A \cdot B+A \cdot B \cdot C+A \cdot B \cdot C$
$Y(A, B, C)=A \cdot B+A \cdot B \cdot C$
$Z(A, B, C)=A+B$

ROM

Implementation

PAL Implementation

PLA Implementation

- Fixed programmed

Example 2

Design a function generator $F=x^{2}$ where x is a 3-bit unsigned binary number.
What size of ROM is required for this generator. Show your ROM and its content.
Answer:
For the 3-bit word there is 8 possibilities, we draw the Truth Table

$\mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x} 0$	x	$f_{5} f_{4} f_{3} f_{2} f_{1} f_{0}$	F
000	0	000000	0
001	1	000001	1
010	2	000100	4
011	3	001001	9
100	4	010000	16
101	5	011001	25
110	6	100100	36
111	7	110001	49

Therefore the size of the ROM will be 8 words each of 6 bits.
It may be further minimized by noticing that $f 0=x 0$ and that $f 1$ is=0. If we take these into account the size of the ROM is 8 words of 4 bits each.

