
APPLICATION NOTE

Mentor Synthesis Group

Precision’s Advanced FSM Optimization
Tom Hill – Synthesis Product Specialist

Introduction
Precision RTL Synthesis will automatically recognize, analyze, encode and optimize finite state machines
(FSM) contained within a design. By performing FSM optimization independently from the general logic
optimization Precision can achieve a superior result by extracting the state vector and applying FSM
specific encoding and optimization.

Recognition
VHDL
Precision can detect FSMs in VHDL that are described using constants or enumerated types for the state
space. Refer to the “Precision HDL Style Guide” for VHDL FSM coding examples
Verilog
Precision can detect FSMs in Verilog that are described using ‘defines or other constants for the state space
and FSMs described using parameters. Precision does not require the use of an “enum” pragma in the RTL
source to detect Verilog FSMs when using parameters. Refer to the “Precision HDL Style Guide” for
Verilog FSM coding examples.

Analysis
Precision performs a detailed analysis on each detected FSM. Unlike other FPGA synthesis tools that limit
FSM analysis to “syntactic analysis” where the FSM is analyzed from the RTL syntax, Precision performs
a more extensive “semantics analysis” where the FSM is decomposed into a mathematical set of equations
to allow a more thorough analysis of the state vector space. Semantics based analysis allows Precision to
find all equivalent and unreachable states and reset conditions. After compile an FSM report will be
generated containing the results of this FSM analysis: An example is provided below

Figure 1 – FSM Report

This FSM report can be viewed from the Precision Project Browser – output files list as shown below

Figure 2 – Precision Design Center – FSM Reports

Page 2

FSM Optimization
Once an FSM has been detected and analyzed Precision will perform a series of optimization steps. These
optimization steps include encoding, unreachable state removal and equivalent state merging. All FSM
controls can be found in the tools options form for “Inputs”

Figure 3 – Precision Tools Options form for Inputs

FSM Encoding
Precision will automatically select an FSM encoding based on target technology and state vector size. The
following encoding schemes are available:

• Binary – Most area efficient. Will use a minimum number of registers to implement the state vector
resulting in the smallest overall area. Binary is generally not the optimal encoding for FPGAs because
of the abundance of registers these devices offer. Precision will use Binary for small FSMs in FPGAs.

• One-hot – Provides the fastest clock to out timing. One-hot FSM encoding will use a separate register
for each bit of the state vector. The state register is connected directly to the FSM outputs providing
the fastest clock to out timing. One-hot FSMs generally result in the fastest performance and are the
most common encoding selected by Precision’s “auto” selection

• Two-hot – Offers a compromise between the area advantages of binary and the performance
advantages of one-hot. Two hot FSMs use 2 register output bits driven to logical one to define the
decoding. For example if you have an FSM with 8 states one hot encoding would require 8 registers, a
binary encoding would require 3 registers and a two-hot encoding would require 5 registers. Use two-
hot encoding when trying to reduce the register count of a high-performance design

• Gray – Creates FSMs with glitchless outputs. Gray encoded FSMs are glitchless. Additional logic is
added to the FSM to prevent output glitches from occurring during the state transition due to race
conditions. Use gray encoding when trying to eliminate glitches at the FSM outputs

• Random – When all else fails. Random encoding will use a randomly encoded the state vector.
Random FSM encoding is not recommended but can be used when all other encoding schemes have
failed to provide the desired result.

• Auto – Automatically selects the optimal encoding. The default-encoding scheme for Precision is
called “auto” which will automatically select an encoding scheme for an FSM based on target
technology and state vector size. When using “auto” the encoding is selected based on the number of
states in the FSM. There is a lower limit and an upper limit. Small state machines that fall below the
lower limit will be implemented as binary. State machines between the lower and upper limits will be
implemented as one-hot and extremely large FSMs will again be implemented as binary.

Page 3

FSM encoding can be specified on a global level from the GUI using the tools -> options -> input dialog
box or at the command line using the following command:

> setup_design -encoding=auto | binary | onehot | twohot | random | gray

Encoding can be specified on an individual FSM basis through HDL attributus.

Setting VHDL Attributes:
When using VHDL standard syntax can be used to assign an attribute to the state type as follows:

-- Declare the type_encoding_style attribute
type my_state_type is (BINARY, ONEHOT, TWOHOT, GRAY, RANDOM);
attribute ENCODING: ONEHOT;

-- Declare your state machine enumeration type
type my_state_type is (s0,s1,s2,s3,s4);

-- Set the type_encoding_style of the state type
attribute ENCODING of my_state_type is ONEHOT;

Setting Verilog Attributes
When using Verilog to specify an FSM encoding simply assign an attribute to the state register as follows

//pragma attribute encoding state_reg onehot

Safe FSM
Rad tolerant or high reliability design applications may require the use of a safe FSM. Safe FSMs are
binary encoded FSMs that have no illegal states. Don’t care conditions are automatically applied to unused
state bits of a design. Safe FSM can be specified from the tools -> options -> input dialog box or at the
command line using the following command

> setup_design -use_safe_fsm

Selecting safe FSM will override the other encoding selections.

Advanced FSM
Precision lets users disable the advanced FSM optimization. Doing so will enable a user to exert greater
control over the FSM implementation through explicit RTL coding styles. For example if a user had
purposely added redundant states to their FSM to improve performance or reduce fanout, disabling
advanced FSM will prevent that redundancy from being removed. Also, when constants are used to
explicitly define an FSM encoding for one-hot or safe FSM, then disabling advanced FSM will prevent this
explicit encoding from being re-encoded. Advanced FSM can be disabled from the tools -> options ->
input dialog box or at the command line using the following command:

> setup_design -advanced_fsm_optimization=false

Page 4

Page 5

Equivalent State Removal

When advanced FSM optimization is enabled Precision will automatically detect and remove equivalent
states in a design. Equivalent states are defined to have the same transition conditions and actions.

S0

S1

S3

S4

S2

2 equivelent states

Figure 3 – Equivalent State FSM Diagram

Terminal State Removal

Advanced FSM optimization will also eliminate terminal states. Terminal states are defined to be states
with a valid entry transition condition but an invalid or nonexistent exit transition condition

S0

S1

S3

S4

S2

Terminal State

Figure 4 – Terminal State FSM Diagram

	APPLICATION NOTE
	Mentor Synthesis Group
	
	Precision’s Advanced FSM Optimization

	Tom Hill – Synthesis Product Specialist

	Introduction
	Recognition
	
	
	VHDL
	Verilog

	Analysis
	
	Figure 2 – Precision Design Center – FSM Reports

	FSM Optimization
	
	
	FSM Encoding
	Setting VHDL Attributes:
	Setting Verilog Attributes
	Safe FSM
	Advanced FSM
	Equivalent State Removal
	Terminal State Removal

