
1

VHDL Primer

Tutorial #4
Mike Goldsmith

Feb 24, 2004, ~ 1 hr duration

2

Outline

• Packages and Functions
• Assert & Report Statements

3

Packages and Functions
• Functions and procedures are just that: a

chunk of code that performs a function or
procedure.

• A different construct from an entity or
component

• Procedures do not produce a result
• Can be declared within architecture scope

and process scope, or as part of a package

4

Packages and Functions
procedure identifier [(parameter_list)] is

{declarative section}
begin

{sequential statements}
end procedure identifier;

• Declarative section can contain types,
variables and nested procedure/ function
descriptions – not signals

• Parameter list is described like ports: in,
out or inout, and can be treated as constant,
variable or signal (default is constant)

5

Packages and Functions
function identifier (parameter_list) return type is

{declarative section}
begin

{sequential statements}
return name;

end function identifier;

• Declarative section same as procedure
• Parameter list must all be of direction in

and cannot be of type variable (default is
constant)

6

Packages and Functions
• Procedure and Function bodies contain all

the funk that you can put in process blocks

function OR_REDUCE (d: in std_logic_vector) return std_logic is
variable to_return: std_logic := ‘1’;

begin
for i in d'range loop

to_return := to_return or d(i);
end loop;
return to_return;

end function OR_REDUCE;

7

Packages and Functions
procedure map_codes (signal op_word: in

std_logic_vector(3 downto 0), signal op_code: out
opcode) is

begin
case (op_word) is

when “0000” => op_code <= noop;
when “0101” => op_code <= bneq;
…

end case;
end process map_codes;

8

Packages and Functions
• A Package is a library where you can group

together types, functions and procedures,
components, etc for reuse

package identifier is
{package declarative region}

end package identifier;
package body identifier is

{package body declarative region}
end package body identifier;

• Package and body identifiers must be the
same

9

Packages and Functions
package reduction_functions is

function AND_REDUCE (D:in std_logic_vector) return std_logic;
function OR_REDUCE (D:in std_logic_vector) return std_logic;
function XOR_REDUCE (D: in std_logic_vector) return std_logic;

end package reduction_functions;
package body reduction _functions is

function OR_REDUCE (D:in std_logic_vector) return std_logic is
end OR_REDUCE;
…

end package body reduction_functions;

• May want to put package declaration and
body in different files; only one body

10

Assert & Report Statements
• Used in simulation; an effective way to

communicate with the “outside world”
• Multiple severity levels for breaking

simulation
• Ignored in synthesis (mostly)

Code Sample:
assert condition [report expression][severity severity_level];

11

Assert & Report Statements
• Severity Levels
type severity_level is (note, warning, error, failure);

• Can trigger simulator to stop when a report
of a particular severity level is emitted

• All reports are sent to the standard out
console (cout), which often can be
redirected

12

Assert & Report Statements
• Sample Code
D_ff : process(clk, reset_n, d)is

variable d_tr: std_logic;
begin

d_tr := d’delayed(FF_RISETIME);
if reset_n = ‘0’ then

q <= ‘0’;
elsif rising_edge(clk) then

assert d_tr = d after 2*FF_RISETIME
report “D-Flipflop risetime not within tolerance” severity error;
q <= d;

end if;
end process D_ff;

	VHDL Primer
	Outline
	Packages and Functions
	Packages and Functions
	Packages and Functions
	Packages and Functions
	Packages and Functions
	Packages and Functions
	Packages and Functions
	Assert & Report Statements
	Assert & Report Statements
	Assert & Report Statements

