
1

VHDL Primer

Tutorial #3
Mike Goldsmith

Feb 10, 2004, ~ 2 hr duration

2

Outline

• New Types and Subtypes
• Composite Data Types
• Type Attributes
• Signal Attributes
• Generic parameters
• Configuration block

3

New Types and Subtypes
• Make your own signal types
• Must specify all possible signal values

type engine_states is (off, starting, running, braking);
signal foo : engine_states := off;

if foo = running then…

4

New Types and Subtypes
• Subtypes create a narrower range
• Must specify range

subtype natural is integer range 0 to highest_integer;
subtype X01 is std_logic range ‘X’ to ‘1’;

signal a, b : natural := -5; --invalid, -5 is not in range
signal c : X01 := ‘0’;

5

New Types and Subtypes
• Types can also have units, referred to as

physical types
type resistance is range 0 to 1E9

units
ohm;
kohm = 1000 ohm;
Mohm = 1000 kohm;

end units resistance;
signal r1,r2,r3 : resistance;
if (r1 / 2.5 = 9 kohm) or (r2/r3 = 2) then

6

Composite Types
• Arrays and Records
• Array: a ‘collection of signals’
• Size is determined by the range

– Can be specified as increasing or decreasing
type point is array (1 to 2) of real;
type plane is array (1 to 2, 1 to 2) of real;

7

Composite Types
• Constrained Arrays: all instances have the

same range
type word is array (31 downto 0) of bit;
signal foo : word := X”FE24_CD58”; --X denotes hex

• Unconstrained Arrays: each instance must
specify the range

type std_logic_vector is array (natural range <>) of
std_logic;

signal foo : std_logic_vector (15 downto 0); -- little endian
signal oof : std_logic_vector (0 to 15); -- big endian

8

Composite Types
• Can assign subrange of one vector to

another (or to a signal)
signal alpha, beta : std_logic_vector(7 downto 0);
signal gamma : std_logic;
beta(3 downto 0) <= alpha(7 downto 4);
beta(7 downto 4) <= “1--1” –use double quotes instead
gamma <= alpha(2);

9

Composite Types
• Can use aggregates to assign initial values

to arrays
• Positional aggregate:
signal x,y : point := (0.0,0.0);

• Named aggregate:
type engines is array (1 to 16) of engine_states;
signal theEngines : engines :=(1|5|7 =>running, 2 => braking,

others => off);

10

Composite Types
• Records: like structs… group signals of

possibly different types
type timestamp is record

hours : integer range 0 to 23;
minutes : integer range 0 to 59;
seconds : integer range 0 to 59;

end record timestamp;
signal current_time : timestamp;
current_time.seconds <= clock mod 60;

11

Composite Types
• Record aggregates: assigning initial values

– Basically named aggregates
signal current_time : timestamp := (hours=>0, minutes=>30,

seconds=>0);

• You can have constrained arrays within
records, and can have arrays of records,
both of which can make aggregates tricky

signal a : radialarc := (start=> (x=>0.0, y=>0.0), end=>
(x=>3.0, y=>5.0), radius=>1.5);

12

Type Attributes
• For any signal of type ‘T’

‘U’int_lowFirst/ Leftmost valueT’left

truefalseBoolean, Range
Ascending

T’ascending

‘-’-1Highest ValueT’high

‘U’int_lowLowest ValueT’low

‘-’-1Last/ Rightmost valueT’right

std_logicnegativeDescriptionAttribute

13

Type Attributes
• For finite-ranged and physical types ‘T’

• For any subtype ‘U’ of type ‘T’, there is an
additional attribute: base

U’base = T; U’base’right = T’right, but maybe not U’right

engine’val(2) = runningValue of ‘n’ in TT’val(n)

engine’pos(off) = 0Position number of
‘x’ in T

T’pos(x)
engineDescriptionAttribute

14

Signal Attributes
• For any signal ‘S’

The range of S (if an array)S’range

Value of S before last eventS’last_value

Time since last event on SS’last_event

Boolean, true if there is a transaction on S in the
current simulation cycle

S’active

A clone of S delayed by TS’delayed(T)

Boolean, True if there has been no change in S
within time T (before now)

S’stable(T)

Boolean, True if there is an event on S in the
current simulation cycle

S’event
DescriptionAttribute

15

Generic parameters
• A parameter used within the architecture that can

be set upon instantiation of the module
• Declared in the entity block
entity reg_gen is

generic(WIDTH : positive := 8);
port(clk : in std_logic;

reset_n: in std_logic;
d: in std_logic_vector (WIDTH-1 downto 0);
q: out std_logic_vector (WIDTH-1 downto 0)

);
end entity reg_gen;

16

Generic parameters
architecture rtl of reg_gen is

signal FF : std_logic_vector (WIDTH-1 downto 0);
begin

process (clk, reset_n, d) is
begin

if reset_n = ‘0’ then
FF <= (FF’range => ’0’); --use of aggregate

else
if rising_edge(clk) then

FF <= d; --even though the size isn’t fixed
end if; --they’re still the same size…

end if;
end process;
q <= FF;

end architecture rtl;

17

Generic parameters
• Instantiating a component with generics
architecture foo of bar is

component reg_gen is
generic(WIDTH : positive := 8);
port(clk : in std_logic;

reset_n: in std_logic;
d: in std_logic_vector (WIDTH-1 downto 0);
q: out std_logic_vector (WIDTH-1 downto 0)

);
end component reg_gen;

…

18

Generic parameters
…

signal clk, reset_n : std_logic;
signal a,b : std_logic_vector(15 downto 0);
signal c,d : std_logic_vector(31 downto 0);

begin
reg16: reg_gen generic map(WIDTH =>16) --NO SEMICOLON

port map(clk=>clk, reset_n=>reset_n, d=>a, q=>b);
reg32: reg_gen generic map(WIDTH =>32)

port map(clk=>clk, reset_n=>reset_n, d=>c, q=>d);
end architecture foo;

• Two different sized registers; same code

19

Configuration blocks
• Disclaimer: I lied. Component blocks

aren’t needed to instantiate a module
• Alternative construct:
architecture foo of bar is
begin

reg16: entity work.reg_gen(rtl)
generic map(WIDTH=>16) port map (…);

end architecture foo;

• Choice of architecture upon instantiation is
fixed

20

Configuration blocks
• Reasons that components are useful is that

you can use the construct of the
configuration block to choose a specific
architecture for specific instances, based on
which architecture of the corresponding
entity is chosen

• Wow, that was a mouthful, but what does it
mean?

21

Configuration blocks
• Syntax:
configuration identifier of entity is

for architecture
for component_id: component_type

[use entity entity_name(architecture);]
[use configuration config_name;]
[nest based on component architecture]

end for;
end for;
[alternate architecture]

end configuration identifier;

22

Configuration blocks
configuration full of foo is

for bar
for reg16: reg_gen

use entity work.reg_gen(rtl);
end for;
for others: reg_gen

use entity work.reg_gen(behavioural);
for behavioural

for all: widgets
use configuration work.widget_cfg;

end for;
end for;

end for;
end for;

end configuration full;

23

Configuration blocks
• Using common mappings to reduce typing
configuration full of foo is

for bar
for all: reg_gen
use entity work.reg_gen(rtl)
generic map (rt=>20 ns, ft=>30 ns, WIDTH=>WIDTH)
port map (clk=>clk, reset_n=>reset_n, d=>open, q=>open);
end for;

end for;
end configuration full;

• Allows for back-annotation of parameters

24

Configuration blocks
• Because of configuration, we only have to

map open ports and unmet generics
architecture foo of bar is
begin

reg16: reg_gen generic map(WIDTH =>16)
port map(d=>a, q=>b);

reg32: reg_gen generic map(WIDTH =>32)
port map(d=>c, q=>d);

end architecture foo;

	VHDL Primer
	Outline
	New Types and Subtypes
	New Types and Subtypes
	New Types and Subtypes
	Composite Types
	Composite Types
	Composite Types
	Composite Types
	Composite Types
	Composite Types
	Type Attributes
	Type Attributes
	Signal Attributes
	Generic parameters
	Generic parameters
	Generic parameters
	Generic parameters
	Configuration blocks
	Configuration blocks
	Configuration blocks
	Configuration blocks
	Configuration blocks
	Configuration blocks

