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Outline

• New Types and Subtypes
• Composite Data Types
• Type Attributes
• Signal Attributes
• Generic parameters
• Configuration block
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New Types and Subtypes
• Make your own signal types
• Must specify all possible signal values

type engine_states is (off, starting, running, braking);
signal foo : engine_states := off;

if foo = running then…
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New Types and Subtypes
• Subtypes create a narrower range
• Must specify range

subtype natural is integer range 0 to highest_integer;
subtype X01 is std_logic range ‘X’ to ‘1’;

signal a, b : natural := -5; --invalid, -5 is not in range
signal c : X01 := ‘0’;
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New Types and Subtypes
• Types can also have units, referred to as 

physical types
type resistance is range 0 to 1E9

units
ohm;
kohm = 1000 ohm;
Mohm = 1000 kohm;

end units resistance;
signal r1,r2,r3 : resistance;
if ( r1 / 2.5 = 9 kohm ) or ( r2/r3 = 2 ) then
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Composite Types
• Arrays and Records
• Array: a ‘collection of signals’
• Size is determined by the range

– Can be specified as increasing or decreasing
type point is array (1 to 2) of real;
type plane is array (1 to 2, 1 to 2) of real;
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Composite Types
• Constrained Arrays: all instances have the 

same range
type word is array (31 downto 0) of bit;
signal foo : word := X”FE24_CD58”; --X denotes hex 

• Unconstrained Arrays: each instance must 
specify the range

type std_logic_vector is array (natural range <>) of
std_logic;

signal foo : std_logic_vector (15 downto 0); -- little endian
signal oof : std_logic_vector (0 to 15); -- big endian



8

Composite Types
• Can assign subrange of one vector to 

another (or to a signal)
signal alpha, beta : std_logic_vector(7 downto 0);
signal gamma : std_logic;
beta(3 downto 0) <= alpha(7 downto 4);
beta(7 downto 4) <= “1--1” –use double quotes instead
gamma <= alpha(2);
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Composite Types
• Can use aggregates to assign initial values 

to arrays
• Positional aggregate:
signal x,y : point := (0.0,0.0);

• Named aggregate:
type engines is array (1 to 16) of engine_states;
signal theEngines : engines :=(1|5|7 =>running, 2 => braking, 

others => off);
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Composite Types
• Records: like structs… group signals of 

possibly different types
type timestamp is record

hours : integer range 0 to 23;
minutes : integer range 0 to 59;
seconds : integer range 0 to 59;

end record timestamp;
signal current_time : timestamp;
current_time.seconds <= clock mod 60;
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Composite Types
• Record aggregates: assigning initial values

– Basically named aggregates
signal current_time : timestamp := (hours=>0, minutes=>30, 

seconds=>0);

• You can have constrained arrays within 
records, and can have arrays of records, 
both of which can make aggregates tricky

signal a : radialarc := (start=> (x=>0.0, y=>0.0), end=> 
(x=>3.0, y=>5.0), radius=>1.5);
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Type Attributes
• For any signal of type ‘T’

‘U’int_lowFirst/ Leftmost valueT’left

truefalseBoolean, Range 
Ascending

T’ascending

‘-’-1Highest ValueT’high

‘U’int_lowLowest ValueT’low

‘-’-1Last/ Rightmost valueT’right

std_logicnegativeDescriptionAttribute
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Type Attributes
• For finite-ranged and physical types ‘T’

• For any subtype ‘U’ of type ‘T’, there is an 
additional attribute: base

U’base = T; U’base’right = T’right, but maybe not U’right

engine’val(2) = runningValue of ‘n’ in TT’val(n)

engine’pos(off) = 0Position number of 
‘x’ in T

T’pos(x)
engineDescriptionAttribute
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Signal Attributes
• For any signal ‘S’

The range of S (if an array)S’range

Value of S before last eventS’last_value

Time since last event on SS’last_event

Boolean, true if there is a transaction on S in the 
current simulation cycle

S’active

A clone of S delayed by TS’delayed(T)

Boolean, True if there has been no change in S 
within time T (before now)

S’stable(T)

Boolean, True if there is an event on S in the 
current simulation cycle

S’event
DescriptionAttribute
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Generic parameters
• A parameter used within the architecture that can 

be set upon instantiation of the module
• Declared in the entity block
entity reg_gen is

generic( WIDTH : positive := 8);
port( clk : in std_logic;

reset_n: in std_logic;
d: in std_logic_vector (WIDTH-1 downto 0);
q: out std_logic_vector (WIDTH-1 downto 0)

);
end entity reg_gen;
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Generic parameters
architecture rtl of reg_gen is

signal FF : std_logic_vector (WIDTH-1 downto 0);
begin

process (clk, reset_n, d) is
begin

if reset_n = ‘0’ then
FF <= (FF’range => ’0’); --use of aggregate

else
if rising_edge(clk) then

FF <= d; --even though the size isn’t fixed
end if; --they’re still the same size…

end if;
end process;
q <= FF;

end architecture rtl;
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Generic parameters
• Instantiating a component with generics
architecture foo of bar is

component reg_gen is
generic( WIDTH : positive := 8);
port( clk : in std_logic;

reset_n: in std_logic;
d: in std_logic_vector (WIDTH-1 downto 0);
q: out std_logic_vector (WIDTH-1 downto 0)

);
end component reg_gen;

…
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Generic parameters
…

signal clk, reset_n : std_logic;
signal a,b : std_logic_vector(15 downto 0);
signal c,d : std_logic_vector(31 downto 0);

begin
reg16: reg_gen generic map( WIDTH =>16) --NO SEMICOLON

port map(clk=>clk, reset_n=>reset_n, d=>a, q=>b);
reg32: reg_gen generic map( WIDTH =>32) 

port map(clk=>clk, reset_n=>reset_n, d=>c, q=>d);
end architecture foo;

• Two different sized registers; same code
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Configuration blocks
• Disclaimer:  I lied.  Component blocks 

aren’t needed to instantiate a module
• Alternative construct:
architecture foo of bar is
begin

reg16: entity work.reg_gen(rtl) 
generic map( WIDTH=>16) port map (…);

end architecture foo;

• Choice of architecture upon instantiation is 
fixed
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Configuration blocks
• Reasons that components are useful is that 

you can use the construct of the 
configuration block to choose a specific 
architecture for specific instances, based on 
which architecture of the corresponding 
entity is chosen

• Wow, that was a mouthful, but what does it 
mean?
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Configuration blocks
• Syntax:
configuration identifier of entity is

for architecture
for component_id: component_type

[use entity entity_name(architecture);]
[use configuration config_name;]
[nest based on component architecture]

end for;
end for;
[alternate architecture]

end configuration identifier;
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Configuration blocks
configuration full of foo is

for bar
for reg16: reg_gen

use entity work.reg_gen(rtl);
end for;
for others: reg_gen

use entity work.reg_gen(behavioural);
for behavioural

for all: widgets
use configuration work.widget_cfg;

end for;
end for;

end for;
end for;

end configuration full;
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Configuration blocks
• Using common mappings to reduce typing
configuration full of foo is

for bar
for all: reg_gen
use entity work.reg_gen(rtl)
generic map (rt=>20 ns, ft=>30 ns, WIDTH=>WIDTH)
port map (clk=>clk, reset_n=>reset_n, d=>open, q=>open);
end for;

end for;
end configuration full;

• Allows for back-annotation of parameters
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Configuration blocks
• Because of configuration, we only have to 

map open ports and unmet generics
architecture foo of bar is
begin

reg16: reg_gen generic map( WIDTH =>16)
port map(d=>a, q=>b);

reg32: reg_gen generic map( WIDTH =>32) 
port map(d=>c, q=>d);

end architecture foo;
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