
VHDL Primer

Tutorial #1
Mike Goldsmith

Jan 27th, 2004, ~1 hr duration

Outline

• Usage of an HDL
• Steps of HDL flow
• Basic VHDL Syntax
• Example design flow

Using an HDL
• Why use a Hardware Description Language?

– Schematic designs for large circuits are cumbersome
– Complicated logic difficult to render at the schematic

level
• Why use VHDL?

– Supports Object Oriented-style design patterns and
good abstraction/ modularization

– Syntax is easy to learn and different enough from
‘programming’ languages to differentiate

Steps of the HDL Design Flow

• 1) Design / Compilation
– Paper design of ‘functionality’
– VHDL coding of functionality
– VHDL compilers will check for syntax errors

• 2) Simulation
– Testing of logic errors: proving the VHDL

functionality meets the design functionality

Steps of the HDL Design Flow

• 3) Synthesis
– Mapping process whereby functionality is

assigned to gate-level design netlist
• 4) Place and Route (PAR)

– Synthesized netlist is mapped onto specific mfg
process in terms of physical location (place)
and data interconnect layer (route)

Steps of the HDL Design Flow

• 5) Verification
– Ongoing process parallel to Simulation,

Synthesis, PAR and post-fab
– Ensure functionality integrity between flow

steps
– Ensure that PAR’d design meets timing, power

consumption, load balanced requirements

Basic VHDL Syntax

• Entity block: describes the interface of the
module

• Sample code:
entity entity_name is

port(in_port : in std_logic; --an input port

out_port : out std_logic --an output port

);

end entity entity_name;

Basic VHDL Syntax

• Architecture block: describes the
implementation of the module

• One entity can have multiple architectures
• Sample code:

architecture arch_name of entity_name is

begin

--body contents

end architecture arch_name;

Basic VHDL Syntax

• Library inclusion: types, functions and other
bits can be stored in a library which can be
included in other designs (for reuse).

• Sample code:
library ieee; --contains all base types and some
use ieee.std_logic_1164.all; --type conversions
library work; --your current design library
use work.my_package.entity_name;
use work.my_package.function_name;

Basic VHDL Syntax
• Process block: Structure within architecture

to establish signal dependencies
– Some logic requires the use of process blocks
– Process is enacted by changing signals in its

sensitivity list
• Sample code:

[process_name :]process(signal_name,…)is

begin

--block body (process name is optional)

end process [process_name];

Basic VHDL Syntax

• Signals, Variables, Constants: your data
– Variables are ‘ignored’ in simulation and

cannot be used within the scope of the
architecture or entity blocks*

• Sample code:
architecture arch_name of entity_name is

signal signal_name,… : type [:= initial_value];
constant constant_name : type := value;

begin

*Shared variables must be declared within the architecture scope, but are only accessible
within process or function scope

Basic VHDL Syntax

• Sample code:
[process_name:]process(signal_name1,…)is

variable variable_name,… : type [:= initial_value];
signal signal_name2,… : type;

begin
signal_name2 <= signal_name1; --signal assign
variable_name := signal_name2; --variable assign

• Initial values are ignored in synthesis

Example Design Flow
library ieee;

use ieee.std_logic_1164.all;

entity inverter is

port(input : in std_ulogic; --values of ‘U’,‘1’,’0’,’X’,’H’,’L’,’W’,’Z’,’-’

output: out std_ulogic

);

end entity inverter;

--architecture number 1: a good (behavioural) design

architecture good of inverter is

begin

output <= not input; -- not '1' = '0', not '0' = '1';

-- all other inputs result in 'X' for 'unknown'

end architecture good;

Example Design Flow
--architecture number 2: a better behavioural design that accounts for all inputs

architecture better of inverter is

begin

output <= '1' when input = '0' else '0'; -- input = '0' means output = '1'; all other inputs

-- (including '1') result in an output of '0';

end architecture better;

Example Design Flow
--architecture number 3: the best architecture that handles all inputs in the most appropriate manner
architecture best of inverter is
begin

process (input) is
begin

case (input) is
when '0' => --force logic zero

output <= '1'; -- output a logic one
when '1' => --force logic one

output <= '0'; -- output a logic zero
when 'X' => --force unknown

output <= 'X'; -- output an unknown
when 'L' => --weak logic zero

output <= '1'; -- output a logic one
when 'H' => --weak logic one

output <= '0'; -- output a logic zero
when 'W' => --weak unknown

output <= 'X'; -- output an unknown
when others => --all unspecified values

output <= 'X'; -- output an unknown
end case;

end process;
end architecture best;

	VHDL Primer
	Outline
	Using an HDL
	Steps of the HDL Design Flow
	Steps of the HDL Design Flow
	Steps of the HDL Design Flow
	Basic VHDL Syntax
	Basic VHDL Syntax
	Basic VHDL Syntax
	Basic VHDL Syntax
	Basic VHDL Syntax
	Basic VHDL Syntax
	Example Design Flow
	Example Design Flow
	Example Design Flow

