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• Example design flow



Using an HDL
• Why use a Hardware Description Language?

– Schematic designs for large circuits are cumbersome
– Complicated logic difficult to render at the schematic 

level
• Why use VHDL?

– Supports Object Oriented-style design patterns and 
good abstraction/ modularization

– Syntax is easy to learn and different enough from 
‘programming’ languages to differentiate



Steps of the HDL Design Flow

• 1) Design / Compilation
– Paper design of ‘functionality’
– VHDL coding of functionality
– VHDL compilers will check for syntax errors

• 2) Simulation
– Testing of logic errors: proving the VHDL 

functionality meets the design functionality



Steps of the HDL Design Flow

• 3) Synthesis
– Mapping process whereby functionality is 

assigned to gate-level design netlist
• 4) Place and Route (PAR)

– Synthesized netlist is mapped onto specific mfg 
process in terms of physical location (place) 
and data interconnect layer (route)



Steps of the HDL Design Flow

• 5) Verification
– Ongoing process parallel to Simulation, 

Synthesis, PAR and post-fab
– Ensure functionality integrity between flow 

steps
– Ensure that PAR’d design meets timing, power 

consumption, load balanced requirements



Basic VHDL Syntax

• Entity block: describes the interface of the 
module

• Sample code:
entity entity_name is

port( in_port : in std_logic; --an input port

out_port : out std_logic --an output port

);

end entity entity_name;



Basic VHDL Syntax

• Architecture block: describes the 
implementation of the module

• One entity can have multiple architectures
• Sample code:

architecture arch_name of entity_name is

begin

--body contents

end architecture arch_name;



Basic VHDL Syntax

• Library inclusion: types, functions and other 
bits can be stored in a library which can be 
included in other designs (for reuse).

• Sample code:
library ieee; --contains all base types and some
use ieee.std_logic_1164.all; --type conversions
library work; --your current design library
use work.my_package.entity_name;
use work.my_package.function_name;



Basic VHDL Syntax
• Process block: Structure within architecture 

to establish signal dependencies
– Some logic requires the use of process blocks
– Process is enacted by changing signals in its 

sensitivity list
• Sample code:

[process_name :]process( signal_name,… )is

begin

--block body (process name is optional)

end process [process_name];



Basic VHDL Syntax

• Signals, Variables, Constants: your data
– Variables are ‘ignored’ in simulation and 

cannot be used within the scope of the 
architecture or entity blocks*

• Sample code:
architecture arch_name of entity_name is

signal signal_name,… : type [:= initial_value];
constant constant_name : type := value;

begin

*Shared variables must be declared within the architecture scope, but are only accessible
within process or function scope



Basic VHDL Syntax

• Sample code:
[process_name:]process(signal_name1,… )is

variable variable_name,… : type [:= initial_value];
signal signal_name2,… : type;

begin
signal_name2 <= signal_name1; --signal assign
variable_name := signal_name2; --variable assign

• Initial values are ignored in synthesis



Example Design Flow
library ieee;

use ieee.std_logic_1164.all;

entity inverter is

port( input : in std_ulogic; --values of ‘U’,‘1’,’0’,’X’,’H’,’L’,’W’,’Z’,’-’

output: out std_ulogic

);

end entity inverter;

--architecture number 1: a good (behavioural) design

architecture good of inverter is

begin

output <= not input; -- not '1' = '0', not '0' = '1'; 

-- all other inputs result in 'X' for 'unknown'

end architecture good;



Example Design Flow
--architecture number 2: a better behavioural design that accounts for all inputs

architecture better of inverter is

begin

output <= '1' when input = '0' else '0'; -- input = '0' means output = '1'; all other inputs 

-- (including '1') result in an output of '0';

end architecture better;



Example Design Flow
--architecture number 3: the best architecture that handles all inputs in the most appropriate manner
architecture best of inverter is
begin

process (input) is
begin

case (input) is
when '0' => --force logic zero

output <= '1'; -- output a logic one
when '1' => --force logic one

output <= '0'; -- output a logic zero
when 'X' => --force unknown

output <= 'X'; -- output an unknown
when 'L' => --weak logic zero

output <= '1'; -- output a logic one
when 'H' => --weak logic one

output <= '0'; -- output a logic zero
when 'W' => --weak unknown

output <= 'X'; -- output an unknown
when others => --all unspecified values

output <= 'X'; -- output an unknown
end case;

end process;
end architecture best;
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