

Abstract— JavaCADD is a Java-based server and client used
for distributed ECAD services. The server/client combination
allows user access to batch-oriented ECAD services
(synthesis, place/route, etc) without having to provide full
login-access for the users. The JavaCADD GUI uses
templates stored at the server for GUI definition, so new
services can be added without modifying the Java source code
of the GUI. Java Remote Method Invocation (RMI) is used
for client/server communication. Both client and server are
Java applications, and share the operating system
independence unique to Java. JavaCADD has been used by
undergraduate classes at MSU to access ECAD applications
and computing resources located at the MSU/NSF
Engineering Research Center. JavaCADD allows access to
these resources without having to grant full login priviledges
to this large, transient user population.

Index terms— Java, Distributed, ECAD

I. INTRODUCTION

Distributed computing has been a moving target over the
years. It has evolved in meaning from simple remote disk
access to distributed task execution over heterogeneous
computing platforms and operating systems. The
introduction of the WWW browser and the Java
programming language has accelerated the evolution of
distributed computing significantly. The Microsystems
Prototyping Laboratory (MPL) associated with the
Mississippi State University/Nation Science Foundation
Engineering Research Center (MSU/NSF ERC) has
developed a Java-based server and client used for
distributed ECAD services. This paper will discuss both
the client and server architectures.

II. DISTRIBUTED ECAD SERVICES

Our goal in this project was to make ECAD services
available outside users without having to grant the users
full login privileges. The basic reason for doing so is to

 The authors are faculty members with the Electrical & Computer
Engineering Department, Mississippi State University. They are also
researchers within the MSU/NSF Engineering Research Center. This report is
distributed as MSSU-COE-ERC-98-07.

support user populations whose members either change
rapidly are whose members are not known ahead of time.
One example of such a user group are students in VLSI or
digital design classes which change on a semester basis.

There are two approaches to providing distributed-services:

A. Browser based Services

In this approach, a browser is used to access the service
interface and a WWW-server is used to execute the service.
Typically, a user will fill out a form, and the form
parameters will be sent to the WWW server where a CGI
script can be used to execute the service. Results can be
returned via email, or a custom HTML page can be built to
display the results. The service interface can be built using
a HTML, or a Java applet can be used for a more
sophisticated capability. One problem with both of these
approaches is that the browser is limited in its ability to
access the local file system for security reasons. User files
either must either stored on the file system where the
server resides or the user must manually transfer these files
between the client file system and the server file system.
Email services can be setup to make this approach
somewhat transparent, but it is difficult to achieve a
seamless capability.

Important advantages of browser-based services include
ease of implementation, and portability of the client-side
interface.

B. Custom Client/Server Architectures

We tried the browser-based approaches discussed above
([1]) in our first generation ECAD services
implementation. However, the file passing limitations
caused us to look at other approaches for our second
generation ECAD services implementation; specifically, a
custom client/server architecture. Custom client/server
architectures offer the utmost in flexibility; however, the
number of different client/server protocols and data
packaging options to choose from are many. A recent
addition to client/server architectures has been Java
Remote Method Invocation (RMI). This protocol offers
portability of both the server and client because of Java’s

JavaCADD: A Java-based Server and GUI for
Providing Distributed ECAD Services

Daniel H. Linder , Robert B. Reese(reese@erc.msstate.edu), Jon Robinson, Sam Russ

June, 98

operating system independence, and provides a very
sophisticated data packing mechanism that allows complex
objects to be passed between client/server with minimum
programmer effort. These two features of Java RMI
operating systems independence and powerful client/server
object passing caused us to choose this approach for
implementation of our ECAD services.

III. JAVACADD SERVER

Two Java applications make up the JavaCADD
architecture – the client and the server. The function of
the server is to accept task requests from client, perform
some action to resolve the task request, and then return
results to the client. Usually, the task request is a request
to spawn an external tool under the control of a user
specified shell script but can also include executing a
dynamically loaded Java class method or other internal
server functions. While the Java portion of the server is
OS-independent, the method for spawning external tasks is
OS-dependent, and a configuration file is used to specify
how this is accomplished for a particular operating system.

A. Internal Server Architecture
Part of the task request is to pass a set of parameters to the
server. These parameters are passed within a Java
hashtable as key/value pairs; the communication
mechanism is Java Remote Method Invocation (RMI). For
security purposes, the server checks the key/value pairs to
see if they match the types defined within a property file
associated with that task request.. If a key/value pair is
unknown or does not match the type defined in the
property file, then the task request is rejected. Each distinct
task or service to be performed by the server requires a
property file. By convention, the property files are stored
under task_server/config/forms ;one of the parameters
passed within the hashtable is a pathname that tells the
server which property file to use.

The property file is divided into property file groups, which
each group defining attribute values for the property. A
property group has the format:

propertyName.attribute1Name = value
propertyName.attribute2Name = value
etc......

The attributes specify the type of the property, whether the
property is required or not, the default value of the
property, etc. The attributes which each property MUST
have and which are checked by the server are:

.required : the value is either true or false. This attribute
defines whether the property is required or not. The task
will not be executed if the property is required, but not
found by the server in the hashtable passed by the client.

.userName : the value can be any string; this string is used
in any error messages returned by the server concerning
this property.
.type : the value specifies the type of the property; the
value must be one of the types supported by the server. An
example of a type is IdentifierField , which only allows
alphanumeric characters and the ‘_’ character. A complete
description of allowed types is contained within the server
software distribution documentation [2]. The purpose of
type checking is to provide a security mechanism on the
data that is passed as part of task requests.

Any other attributes can be added by the user and are
simply ignored by the server. There is a method by which
the client can request the contents of a property file from
the server. The server returns the property file as a
hashtable of hashtables. The keys used in the first-level
hashtable are the propertyNames, the keys used in the 2nd
level hashtable are the attribute names. This feature allows
the client to 'discover' new tool features when the client is
started. This is how the JavaCADD client queries the
server for the current tool list stored on the server.

The server expects the hashtable passed to it by the client
to contain a key whose name is propertyName, and whose
value is the string value to be passed to the tool that will
execute the task. All values of keys in the hashtable passed
by the client to the server should be Java bytestrings.

B. Properties Recognized by the Server

There are some properties that are recognized by the
server. These are:

action : The value of this property tells the server what
type of action is to be done on behalf of the client. Two
documented values are ExternalAction and echoProperties.
ExternalAction is used when you want the server to execute
an external command such as a script on behalf on the
client. echoProperties is used to return the contents of a
specified property file to the client. If ExternalAction is
used, two additional lines must be in the property file;
these lines specify the pathname of the external command
and a string to be used in error messages concerning the
execution of this command. The format of these lines are
shown below:

 externalCmd = pathname_to_script
 cmdUserName = anystring

properties : The value of this property is the pathname of
the properties file to be used when checking the key/value
pairs of the hashtable from the client. The pathname is
relative to the config directory of the task server ; an
example value would be forms/clientTest/clientTest1.props.

password : This is an optional property. It can be used to
password protect a particular service (at this time one
password is assigned to the entire service, it is not possible
to give passwords for different users of the service). The
file task_server/config/forms/passwords contains key/value
pairs that associate passwords with property files. The
value of the password property passed by the client would
need to match the password key in the password file, the
property file name would need to match as well. Password
protection of a service is optional. All other properties in a
property file are user defined.

C. Server Execution of an External Command

As mentioned previously, if the value of the action
property is ExternalAction, then the externalCmd line
found in the property file will be executed as the 'task' by
the server. It should be noted that the value of externalCmd
is always read from the property file; it is not read from the
hashtable passed by the client. The server creates a
temporary directory called
task_server/task_server_tmp/task_dir_NNNN

where NNNN is the directory id for use by the task. The
command line used by the TaskServer to spawn the task is:

 taskServer.execCmd TmpDir ExternalAction

where the taskServer.execCmd is specifed in the server
configuration file. For Solaris OS, the default configuration
file causes the command to be:

 perl execProcess.pl TmpDir ExternalAction

The 'execProcess.pl' script first calls the 'setpgrp()' function
so that all processes spawned by this script have the same
group process ID, then changes to 'TmpDir' before
executing the ExternalAction command. The
'execProcess.pl' script also prints out its process ID to
STDERR so that the TaskServer reads this value and use it
later for killing the job if necessary. The 'setpgrp()'
function is VERY important since it allows all tasks
spawned by this script to belong to the same process group,
and thus all tasks can be killed by killing the process
group. You can change the property specifed by
taskServer.execCmd to be whatever you wish, but the
ProcessID must be written to STDERR for the TaskServer
to read. Another action which should be performed by the
'taskServer.execCmd' executable is to set up a common
environment for all tasks that are to be executed by this
TaskServer.

The task server will pass the key/value pairs from the client
hashtable inside a file named 'request.props'; this file
contains lines of the form:

 key = value

The 'request.props' file will be in the task_dir_NNNN
directory if the hashtable contains no properties of the type
'fileField'. If the hashtable contains properties of the type
'fileField', then the 'requests.props' file will be in a
directory called request. A file will be created in the
request/ directory for each property of type 'fileField'; the
filename will match the property name and the file
contents will be the value passed in the hashtable for that
property.
To pass information back to the client after the task has
been completed, the task script should create a directory
named "/response". Any files in this directory with
extension of ".props" will be assumed to contain key/value
pairs which will be placed in the hashtable which is
returned by the server to the client. Any files in the
"/response" directory without a ".props" extension will be
placed in the returned hashtable as key/value pairs where
the key is the filename, and the value is the file contents.

The temporary directory space is reclaimed by the server
upon task completion unless the task creates a file named
'state' in the task_dir_NNNN/ directory (contents of the
'state' file are unimportant). The task server configuration
file contains a variable named dir.maxDirCnt which
controls the maximum number of temporary directories; if
this count is exceeded the server begins reclaiming
temporary directories starting with the oldest directory.
The purpose of the 'state' file is to be able to examine
temporary directory space usage during script debugging; it
can also be used to pass information between different
tasks.

The object returned by the server to the client task is a Java
object of class FormResult. The instance variables of this
object are:

• public int dirId : This contains the NNNN field
of the temporary directory task_dir_NNNN used
for executing the task.

• public int errorCode : If nonzero, then indicates
that an error was encountered during execution of
the task.

• public byte[] response : This will contain the
error message if an error occurred. The error
message is formatted in HTML.

• public Hashtable responseHash : This contains
the key/value pair as returned by the task script
execution as discussed above.

IV. THE JAVACADD CLIENT

The JavaCADD client is a Java GUI for remote task
invocation built upon the capabilities of the JavaCADD
server. At startup, the JavaCADD GUI contacts the server
for the contents of the property file
"config/forms/release/metatool.props". The contents of this

property file tells the client which tool services are
available on the server. This information is then displayed
in a local window as shown in Figure 1.

Left clicking on a service will select the service; then left
clicking on Launch Tool will cause the JavaCADD
application to query the server for the GUI-specifics for
that tool. Once the tool personalization information has
been returned, the JavaCADD application window
customized for that tool will appear.

Figure 1: JavaCADD Client Tool List

The JavaCADD application window for the "Synopsys
Synthesis" service appears below:

Figure 2: Synopsys Task Window

During execution of the server, a tool application window
will be opened on the client machine that allows the user to
monitor the progress of the task. The user also has the
ability to kill the task at any time.

There is no limit to the number of active tool application
windows; you can also have multiple JavaCADD launch
windows present, each connected to a different server if
desired

The tool property file for a JavaCADD GUI tool service not
only describes what parameters will be passed to the tool
script during execution, but also determines how the
JavaCADD GUI for the tool service will look.

Property Attributes used by the JavaCADD GUI are:

• .level : this is an integer value which determines
the order in which fields appear on the GUI. The
higher the number, the higher 'up' on the form the
field will appear. The 'level' values do not have to
be in sequential order.

• .choices: This will cause a list menu to be
presented to the user, the contents of list menu
will be the white-space seperated strings used for
choices attribute value.

• .choicedelimiters: An optional attribute, this
specifies the delimiters to be used for the items in
the choices attribute. If not specified, the
delimiters default to whitespace. Leading/trailing
whitespace is always trimmed during parsing of
the string in the choices attribute. Note that if the
choicedelimiters attribute is specified (non-
whitespace is being used for delimiters), you will
need to specify the type attribute of this property
as either MultiIdentifierField or StringField.

• .default: Default value to be presented to the user
as a value for this property.

• .multi: This can be used in conjunction with a
'FileField' type property. It places a 'multi'
pushbutton on the GUI next to type-in field for
this property. If the button is pushed, then type-in
field of this property on the GUI specifies a file
which contains a LIST of files, these files will be
sent to the server as property key names
"propertyName0, propertyName1,... ". See the
property files
"config/release_msu/Syn_synth.props" for an
example use of this attribute.

 The JavaCADD GUI requires two properties for
supporting redirection of the tool output to the tool
application window. These properties and associated
attributes are given below, and should be in every tool
property file used by the JavaCADD GUI:

redirectHost.required = false

redirectHost.userName = redirectHost
redirectHost.type = StringField
redirectHost.default = none

redirectPort.required = false
redirectPort.userName = redirectPort
redirectPort.type = IntField
redirectPort.default = 0

The JavaCADD GUI uses the general server/client
parameter passing methods as discussed previously.
However, there are some specifics that need to be
mentioned:

• Any properties of type 'Filefield' are passed as
compressed Java GZIP streams. As discussed
previously, 'FileField' properties are created as
files in the 'request/' directory where the the file
name is the propertyname, and the contents is the
byte stream. It is the responsibility of the task
script to uncompress these streams.

• The JavaCADD GUI looks for a special key called
'results.zip' in the returned hashtable from the
server. The value of this key is treated as a ZIP
stream and unzipped into the results directory
specified by the user. Any other keys found in the
returned hashtable are echoed by the JavaCADD
GUI to the 'log' window.

V. USE OF JAVACADD

JavaCADD has become the standard method for student
access to synthesis tools used in our upper level Digital
System design class. The synthesis tools run on computing
resources within the MSU/NSF Engineering Research
Center and full login privileges for this transient user
population is neither desired nor needed. Student response
to the JavaCADD interface has been very positive to date.
One result in making JavaCADD our standard interface
has been a decoupling of tool implementation and service
interface. Tutorial notes now refer to the JavaCADD GUI
interface and not to the particular tool implementing the
service. This means that students are more protected from
tool changes via vendor upgrades. It also makes CAD tool
system administration easier since vendor upgrades only
effect the server side scripts.

VI. REFERENCES

1. R. Reese and D. Linder. “A Generator-Based Standard
Cell Library using Mentor ICGEN”, Mentor User
Group Meeting, October 21-23rd, 1996.

2. R. Reese, http://www.erc.msstate.edu/mpl/vela,
JavaCADD Server and Client Distribution page.

