MOSFET Device Operation

Enhancement-mode *n*MOS transistor cross-section

Holes are repelled from the gate by positive V_{GS} (*n*MOSFET)

At the onset of INVERSION, *electrons* attracted under the gate to form channel.

For a depletion-mode *n*MOS, area under gate is actually a lightly doped *n*-type material so that threshold voltage is < 0V.

MOSFET Structure versus Bias

September 7, 1998

- Cross-section (a): potential in channel same everywhere because $V_{GS} = V_{GD}$, channel "depth" same everywhere since $V_{GS} > V_T$ and $V_{GD} > V_T$
- Cross-section (b): Depth of channel varies somewhat linearly with V_{GS} and V_{DS}. As V_{DS} is increased, the drain-side of channel (just beneath the gate) becomes "pinched" because V_{GD} becomes less and less.

How does conduction occur *after* "pinch-off"? Electrons enter channel from source, then are swept across depletion region near drain by the positive drain voltage with respect to source (V_{DS}).

MOSFET Threshold Voltage

 $V_T = V_{T-MOS} + V_{fb}$ (V_{T-MOS} is positive for *n*MOS, negative for *p*MOS)

 V_{T-MOS} — ideal threshold voltage for a MOS capacitor (the capacitor formed between the gate and substrate)

V_{fb} — Flatband voltage

$$V_{T-MOS} = 2\emptyset_b + \frac{Q_b}{C_{ox}}$$
 (Note: "Q_b" sometimes referred to as "Q_{bo}")

 C_{ox} = oxide capacitance, inversely proportional to oxide thickness $\left(C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}\right)$

$$Q_b = \sqrt{2\epsilon_{si} \cdot q \cdot N_A \cdot 2\emptyset_b} \quad \Leftarrow \quad \text{bulk charge term (total charge stored in depletion layer), } p$$
-substrate in this case

Bulk potential — potential difference between Fermi level in intrinsic semiconductor and Fermi level in doped semiconductor

Fermi level is the average energy level in a material. For intrinsic materials, it is halfway between the valence band and conduction band.

p-type \Rightarrow Fermi level closer to valence band n-type \Rightarrow Fermi level closer to conduction band

Other Constants (see text for values): k = Boltzmann's constant (eV/K, J/K) q = Electronic charge (coulombs) T = temperature (K) $N_A = carrier density in doped semiconductor$ $n_i = intrinsic carrier concentration in Silicon$ $\varepsilon_{si} = permittivity of Silicon = \varepsilon_r \cdot \varepsilon_0$ $\varepsilon_r = 11.7$ (relative Silicon permittivity) ε_0 (permittivity of free space)

MOSFET Threshold Voltage (continued)

 $V_{fb} = \emptyset_{ms} - \frac{Q_{fc}}{C_{ox}}$ (\emptyset_{ms} = gate work function, Q_{fc} sometimes referred to as Q_{ss})

- $Q_{fc} \Rightarrow$ fixed charge due to surface states which arise due to imperfections in silicon oxide interface and doping
- $Ø_{ms} \Rightarrow$ gate work function which is the work function difference between the gate material and substrate

$$Ø_{\rm ms} = -\left(\frac{{\rm E}_{\rm g}}{2{\rm q}} + O_{\rm b}\right)$$

 $E_g \Rightarrow$ Bandgap energy of Silicon (temperature <u>dependent</u>)

 $Ø_b \Rightarrow$ bulk Fermi potential

Note: E_g is actually in electron volts, $1eV = 1q \cdot 1V$, so "q" 's in $Ø_{ms}$ expression cancel out.

Two common techniques for increasing the native threshold voltage of a MOS device:

(1) Vary the doping concentration at the silicon-insulator interface through ion implantation (in process step called "threshold adjustment")

 \Rightarrow affects Q_{fc} (Q_{ss}, surface state charge)

(2) Use different insulating material for gate

 \Rightarrow affects C_{ox}

Between transistors, use very thick oxide (>> t_{ox}) to increase threshold voltage so that substrate surface does not become inverted through normal circuit voltage (obviously you do not want signal wire voltages and V_{DD} lines inverting substrate). This keeps transistors electronically isolated from each other.

Example V_T calculation: Calculate the native threshold voltage for an *n*-transistor at 300°K for a process with a Si substrate with $N_A = 1.80 \times 10^{-16}$ cm⁻³, a SiO₂ gate oxide with thickness 200Å. (Assume $Ø_{ms} = -0.9$ V, $Q_{fc} = 0$ C.)

$$Ø_{b} = 0.02586 \ln \frac{1.80 \times 10^{-16}}{1.45 \times 10^{10}} = 0.36V;$$

note $\frac{kT}{q} = 0.02586V @ T = 300^{\circ}K$

with

$$C_{\text{ox}} = \frac{3.9 \times 8.85 \times 10^{-14}}{0.2 \times 10^{-5}} = 1.726 \times 10^{-7} \,\frac{\text{Farades}}{\text{cm}^2}$$

resulting in

$$V_{T} = \emptyset_{ms} + \frac{\sqrt{2\epsilon_{si}qN_{A}2\emptyset_{b}}}{C_{ox}} + 2\emptyset_{b} = (-0.9 + 0.384 + 0.72)V = 0.16V$$

This device has a very low threshold voltage.

Substrate (bulk) bias effect on Threshold Voltage

For *n*MOS, substrate usually tied to ground. However, if V_{SB} (source-to-bulk) \neq 0V, the threshold equations become:

$$\begin{split} & V_T = V_{fb} + 2 \not{\emptyset}_b + \frac{\sqrt{2\epsilon_{si}qN_A(2\not{\emptyset}_b + |V_{SB}|)}}{C_{ox}} \\ & V_T = V_{TO} + \gamma \left(\sqrt{2\not{\emptyset}_b + |V_{SB}|} - \sqrt{2\not{\emptyset}_b} \right) \end{split}$$

where V_{TO} is threshold voltage when $V_{SB} = 0V$ and γ is a constant which describes substrate bias effect.

$$\gamma = \frac{t_{ox}}{\epsilon_{ox}} \sqrt{2\epsilon_{si}qN_A} = \frac{1}{C_{ox}} \sqrt{2\epsilon_{si}qN_A}$$

Values of γ usually range from (0.4 to 1.2)V^{1/2}.

In SPICE, $\gamma = GAMMA$, $V_{TO} = VTO$, $N_A = NSUB$, $\emptyset_s = 2\emptyset_b$ is PHI.

Example of substrate bias effect on threshold voltage: With $N_A = 3 \times 10^{16} \text{cm}^{-3}$, $t_{ox} = 200\text{\AA}$, $\epsilon_{ox} = 3.9 \times 8.85 \times 10^{-14} \text{F/cm}$, $\epsilon_{si} = 11.7 \times 8.85 \times 10^{-14} \text{F/cm}$, and $q = 1.6 \times 10^{-19} \text{Coulomb}$

$$\gamma = \frac{0.2 \times 10^{-5}}{3.9 \times 8.85 \times 10^{-14}} \sqrt{2 \times 1.6 \times 10^{-19} \times 11.7 \times 8.85 \times 10^{-14} \times 3 \times 10^{16}} = 0.57 \text{V}^{1/2}$$
$$\emptyset_{\text{b}} = 0.02586 \ln \frac{3 \times 10^{16}}{1.5 \times 10^{10}} = 0.375 \text{V}$$
At a V_{SB} = 2.5V,
$$V_{\text{T}} = V_{\text{TO}} + 0.57 (\sqrt{0.75 + 2.5} + \sqrt{0.75})$$

In analog designs it is quite common to use substrate bias to shift threshold voltage.

 $V_{T} = V_{TO} + 0.53V$

Note: When connecting devices in series, V_T of top device will increase if V_B tied to appropriate rail because V_{SB} is not zero.

Actual shift in threshold voltage due to the above arrangement is very small.

Revisit operation under Saturation

Current in the induced channel is constant because voltage drop is fixed at V_{GS} - V_T .

Ideal equation $I_D = \frac{\beta_n}{2} (V_{GS} - V_{Tn})^2$ is not entirely accurate because pinch-off point under gate is influenced by V_{DS}. This influence of V_{DS} on pinch-off *essentially* modifies the length of the channel (channel length modulation effect).

New equation for Saturation

$$I_{D} = \frac{\beta}{2} \left(V_{GS} - V_{Tn} \right)^{2} (1 + \lambda V_{DS})$$

 λ in SPICE is called LAMBDA, and is the channel length modulation factor. Empirical values range from (0.02 to 0.005) V^-1.

If we rewrite our current equation as

$$I_{D} = \frac{K'}{2} \frac{W}{L} \left(V_{GS} - V_{Tn} \right)^{2} (1 + \lambda V_{DS})$$

then when $\lambda > 0V^{-1}$, the effective channel length is reduced. Be careful not to confuse channel length with gate length. In saturated pinch-off, they are *not* equal!