Ideal Inverter

Actual Inverter Characteristics, some definitions

- $\mathrm{V}_{\text {IL }}$ represents the maximum logic 0 (LOW) input voltage that will guarantee a logic $1(\mathrm{HIGH})$ at the output
- $\mathrm{V}_{\text {IH }}$ represents the minimum logic 1 (HIGH) input voltage that will guarantee a logic 0 (LOW) at the output

Noise Margin

Illustration of Noise Margin:

Calculate noise margin using

$$
\mathrm{NM}_{\mathrm{L}}=\mathrm{V}_{\mathrm{IL}}-\mathrm{V}_{\mathrm{OL}}
$$

$$
\mathrm{NM}_{\mathrm{H}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{IH}}
$$

How do we determine $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$, and V_{IH} ?

We must exam the inverter's transfer characteristic.

CMOS Inverter Regions of Operation

Region A:

$0 \leq \mathrm{V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{T} n} \quad \Rightarrow \quad p \mathrm{MOS}$ nonsaturated (cutoff); $n \mathrm{MOS}$ cutoff

- $n \mathrm{MOS}$ is cutoff because $\mathrm{V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{T} n}$

Why is the p MOS device in the linear region?
Linear region $\equiv \mathrm{V}_{\mathrm{SD} p}<\mathrm{V}_{\mathrm{SG} p}-\left|\mathrm{V}_{\mathrm{T} p}\right|$

$$
\begin{aligned}
(5-5) \mathrm{V}<(5-0) \mathrm{V}- & |-0.7| \mathrm{V} \\
& {\left[\text { for } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{T} p}=-0.7 \mathrm{~V}\right] }
\end{aligned}
$$

$$
0 \mathrm{~V}<4.3 \mathrm{~V}
$$

Note that the p MOS device can be in linear region even if $\mathrm{I}_{\mathrm{D} p} \approx 0 \mathrm{~A}$!

Region B:

$\mathrm{V}_{\mathrm{T} n} \leq \mathrm{V}_{\mathrm{in}}<\mathrm{V}_{t h} \quad \Rightarrow \quad p \mathrm{MOS}$ nonsaturated, n MOS saturated
Why is n MOS saturated? \quad Is $\mathrm{V}_{\mathrm{DS} n}>\mathrm{V}_{\mathrm{GS} n}-\mathrm{V}_{\mathrm{T} n}$?
Because $\left(\mathrm{V}_{\mathrm{DS} n}=\mathrm{V}_{\text {out }}\right)>\mathrm{V}_{t h}$ and $\left(\mathrm{V}_{\mathrm{GS} n}=\mathrm{V}_{\text {in }}\right)<\mathrm{V}_{t h}$,
then $\quad \mathrm{V}_{\mathrm{DS} n}>\mathrm{V}_{\mathrm{GS} n}-\mathrm{V}_{\mathrm{T} n}$ $\mathrm{V}_{\text {out }}>\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{T} n}$

Why is $p \mathrm{MOS}$ in linear region?
It started out in linear and will remain in linear as long as

$$
\begin{align*}
& \mathrm{V}_{\mathrm{SD} p}<\mathrm{V}_{\mathrm{SG} p}-\left|\mathrm{V}_{\mathrm{T} p}\right| \\
& \left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {out }}\right)<\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {in }}\right)-\left|\mathrm{V}_{\mathrm{T} p}\right| \\
& \mathrm{V}_{\text {in }}<\mathrm{V}_{\text {out }}-\left|\mathrm{V}_{\mathrm{T} p}\right| \tag{B-2}
\end{align*}
$$

$\mathrm{V}_{\text {out }}$ in the above expression (Eqn. [B-2]) is decreasing towards $\mathrm{V}_{t h}$ and $\mathrm{V}_{\text {in }}$ is increasing towards $\mathrm{V}_{\text {th }}$. When Eqn. [B-2] no longer holds, then the p MOS device will become saturated.

For the p MOS device, then

$$
\text { regions } \mathrm{A} \Rightarrow \mathrm{~B} \Rightarrow \mathrm{C} \text { correspond to }
$$

linear \Rightarrow linear \Rightarrow saturated, respectively.

How can you predict the output voltage for region B?
The $n \mathrm{MOS}$ is saturated, so $\mathrm{I}_{\mathrm{D} n}=\frac{\beta_{n}}{2}\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{T} n}\right)^{2}=\frac{\beta_{n}}{2}\left(\mathrm{~V}_{\mathrm{GS} n}-\mathrm{V}_{\mathrm{T} n}\right)^{2}$

The p MOS is linear, so

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D} p}=\frac{\beta_{p}}{2}\left(2\left(\mathrm{~V}_{\mathrm{SG} p}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right) \mathrm{V}_{\mathrm{SD} p}-\left(\mathrm{V}_{\mathrm{SD} p}\right)^{2}\right) \\
& \mathrm{I}_{\mathrm{D} p}=\frac{\beta_{p}}{2}\left(2\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\text {in }}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {out }}\right)-\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {out }}\right)^{2}\right)
\end{aligned}
$$

Can solve for $\mathrm{V}_{\text {out }}$ since

Equivalent circuit for region $B \Rightarrow$

Region C:

$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {th }} \quad \Rightarrow \quad p \mathrm{MOS}$ saturated, $n \mathrm{MOS}$ saturated
In order for n MOS to be saturated, need

$$
\begin{gathered}
\mathrm{V}_{\mathrm{DS} n}>\mathrm{V}_{\mathrm{GS} n}-\mathrm{V}_{\mathrm{T} n} \\
\mathrm{~V}_{\text {out }}>\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{T} n}
\end{gathered}
$$

In order for p MOS to be saturated, need

$$
\begin{aligned}
\mathrm{V}_{\mathrm{SD} p} & >\mathrm{V}_{\mathrm{SG} p}-\left|\mathrm{V}_{\mathrm{T} p}\right| \\
\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {out }} & >\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{in}}-\left|\mathrm{V}_{\mathrm{T} p}\right| \\
\mathrm{V}_{\text {out }} & <\mathrm{V}_{\text {in }}+\left|\mathrm{V}_{\mathrm{T} p}\right|
\end{aligned}
$$

So $\mathrm{V}_{\text {out }}$ in region C ,

$$
\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{T} n}<\mathrm{V}_{\text {out }}<\mathrm{V}_{\text {in }}+\left|\mathrm{V}_{\mathrm{T} p}\right|
$$

The CMOS inverter has very high gain in region C so small changes in $\mathrm{V}_{\text {in }}$ produce large changes in $\mathrm{V}_{\text {out }}$. No closed form equation for $\mathrm{V}_{\text {out }}$. Somewhere in this region, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }}$, which is the switching point for this gate.

Equivalent circuit for region C:

What is $\mathrm{V}_{\text {in }}$ in region C ?

In region C , both devices in saturation so

$$
\begin{gathered}
\mathrm{I}_{\mathrm{D} p}=\frac{\beta_{p}}{2}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{in}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2} \\
\mathrm{I}_{\mathrm{D} n}=\frac{\beta_{n}}{2}\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{T} n}\right)^{2}
\end{gathered}
$$

So, using $\mathrm{I}_{\mathrm{D} n}=\mathrm{I}_{\mathrm{D} p}, \mathrm{~V}_{\mathrm{in}}$ can be solved for (more on this later....)

Region D:

$\mathrm{V}_{t h}<\mathrm{V}_{\mathrm{in}} \leq \mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right| \Rightarrow p \mathrm{MOS}$ saturated, $n \mathrm{MOS}$ linear
Hence, $\quad \mathrm{I}_{\mathrm{D} p}=\frac{\beta_{p}}{2}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{in}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}$

$$
\mathrm{I}_{\mathrm{D} n}=\frac{\beta_{n}}{2}\left(2\left(\mathrm{~V}_{\text {in }}-\mathrm{V}_{\mathrm{T} n}\right) \mathrm{V}_{\text {out }}-\mathrm{V}_{\text {out }}^{2}\right)
$$

Again, since $\mathrm{I}_{\mathrm{D} p}=\mathrm{I}_{\mathrm{D} n}$, we can solve for $\mathrm{V}_{\text {out }}$:

$$
\begin{aligned}
& \mathrm{V}_{\text {out }^{2}-2\left(\mathrm{~V}_{\text {in }}-\mathrm{V}_{\mathrm{T} n}\right) \mathrm{V}_{\text {out }}+\frac{\beta_{p}}{\beta_{n}}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\text {in }}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}=0}^{\text {using } \quad \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}}
\end{aligned}
$$

and, recognizing from above,

$$
\mathrm{a}=1, \mathrm{~b}=-2\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{T} n}\right), \mathrm{c}=\frac{\beta_{p}}{\beta_{n}}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{in}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}
$$

we get

$$
\mathrm{V}_{\text {out }}=\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{T} n}\right)-\sqrt{\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{T} n}\right)^{2}-\frac{\beta_{p}}{\beta_{n}}\left(\mathrm{~V}_{\text {in }}-\mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}}
$$

Equivalent circuit for region $\mathrm{D} \Rightarrow$

Region E:

$\mathrm{V}_{\mathrm{in}}>\mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right| \quad \Rightarrow \quad p \mathrm{MOS}$ is cutoff, $n \mathrm{MOS}$ is linear mode Since $\mathrm{V}_{\mathrm{SG} p}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{in}}\left(<\left|\mathrm{V}_{\mathrm{T} p}\right|\right)$,

$$
\therefore \mathrm{V}_{\text {out }} \approx 0 \mathrm{~V}
$$

due to $n \mathrm{MOS}$ acting as pull-down while $p \mathrm{MOS}$ in cutoff.

CMOS Inverter Transfer Characteristic

Analysis:
$\mathbf{V O H}_{\mathbf{O H}}: \mathrm{V}_{\text {in }}<\mathrm{V}_{\mathrm{T} n}$, the $n \mathrm{MOS}$ transistor is in cutoff while the p MOS transistor is turned-on (inversion layer established). The result is
$\mathrm{V}_{\mathrm{OH}} \approx \mathrm{V}_{\mathrm{DD}}$.
VOL: $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{in}}\right)<\left|\mathrm{V}_{\mathrm{T} p}\right|$, the $p \mathrm{MOS}$ is in cutoff while the $n \mathrm{MOS}$ is on and providing a conduction channel to ground. Hence,
$\mathrm{V}_{\mathrm{OL}} \approx 0 \mathrm{~V}$.
$\mathbf{V}_{\text {IL }}$: Input low voltage, here the $n \mathrm{MOS}$ transistor is saturated and the $p \mathrm{MOS}$ is nonsaturated. Equating the currents provides

$$
\begin{aligned}
& \frac{\beta_{n}}{2}\left(\mathrm{~V}_{\mathrm{IL}}-\mathrm{V}_{\mathrm{T} n}\right)^{2}= \\
& \quad \frac{\beta_{p}}{2}\left(2\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{IL}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{out}}\right)-\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{out}}\right)^{2}\right)
\end{aligned}
$$

$V_{\text {IL }}$: (continued) Since two unknowns exist, $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$ and $\mathrm{V}_{\text {out }}$, a second equation is needed. Use the unity-gain condition to obtain this second equation,

$$
\frac{\mathrm{d} \mathrm{~V}_{\text {out }}}{\mathrm{d} \mathrm{~V}_{\mathrm{in}}}=\frac{\left(\partial \mathrm{I}_{\mathrm{D} n} / \partial \mathrm{V}_{\mathrm{in}}\right)-\left(\partial \mathrm{I}_{\mathrm{D} p} / \partial \mathrm{V}_{\mathrm{in}}\right)}{\left(\partial \mathrm{I}_{\mathrm{D} p} / \partial \mathrm{V}_{\mathrm{out}}\right)}=-1
$$

provides

$$
\mathrm{V}_{\mathrm{IL}}\left(1+\frac{\beta_{n}}{\beta_{p}}\right)=2 \mathrm{~V}_{\text {out }}+\frac{\beta_{n}}{\beta_{p}} \mathrm{~V}_{\mathrm{T} n}-\mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right|
$$

Now the two equations needed to solve for $\mathrm{V}_{\text {IL }}$ and $\mathrm{V}_{\text {out }}$ exist.
$\mathbf{V}_{\text {IH }}$: Input high voltage, here the $n \mathrm{MOS}$ is nonsaturated and the $p \mathrm{MOS}$ is saturated. Equating the drain currents yields
$\frac{\beta_{n}}{2}\left(2\left(\mathrm{~V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{T} n}\right) \mathrm{V}_{\text {out }}-\mathrm{V}_{\text {out }}{ }^{2}\right)=\frac{\beta_{p}}{2}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{IH}}-\left|\mathrm{V}_{\mathrm{T} p}\right|^{2}\right)$,
the first of two equations needed to solve two unknowns, $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {out }}$. Use the unity-gain condition to get the second,

$$
\frac{\mathrm{dV}_{\text {out }}}{\mathrm{d} \mathrm{~V}_{\text {in }}}=\frac{\left(\partial \mathrm{I}_{\mathrm{D} p} / \partial \mathrm{V}_{\text {in }}\right)-\left(\partial \mathrm{I}_{\mathrm{D} n} / \partial \mathrm{V}_{\text {in }}\right)}{\left(\partial \mathrm{I}_{\mathrm{D} n} / \partial \mathrm{V}_{\text {out }}\right)}=-1 .
$$

This provides

$$
\mathrm{V}_{\mathrm{IH}}\left(1+\frac{\beta_{p}}{\beta_{n}}\right)=2 \mathrm{~V}_{\text {out }}+\mathrm{V}_{\mathrm{T} n}+\frac{\beta_{p}}{\beta_{n}}\left(\mathrm{~V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right),
$$

the second equation needed to solve for the two unknowns.
$\mathbf{V}_{\boldsymbol{t} h}$: At the CMOS inverter's switching point, or inverter threshold, $\mathrm{V}_{\text {th }}=\mathrm{V}_{\mathrm{in}}$ $=\mathrm{V}_{\text {out }}$ and both the $p \mathrm{MOS}$ and $n \mathrm{MOS}$ transistors are saturated. Again, equating the drain currents,

$$
\frac{\beta_{n}}{2}\left(\mathrm{~V}_{t h}-\mathrm{V}_{\mathrm{T} n}\right)^{2}=\frac{\beta_{p}}{2}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{t h}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}
$$

is obtained which can be easily solved to provide $\mathrm{V}_{t h}$,

$$
\mathrm{V}_{t h}=\frac{\mathrm{V}_{\mathrm{T} n}+\sqrt{\frac{\beta_{p}}{\beta_{n}}}\left(\mathrm{~V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)}{\left(1+\sqrt{\frac{\beta_{p}}{\beta_{n}}}\right)}
$$

Note: switching point of gate $\left(\mathrm{V}_{t h}\right)$ is $\frac{\mathrm{V}_{\mathrm{DD}}}{2}$-if- $\frac{\beta_{n}}{\beta_{p}}=1$ and $\mathrm{V}_{\mathrm{T} n}=-\mathrm{V}_{\mathrm{T} p}$.
So, switching point of inverter is function of the ratio of the $n \mathrm{MOS} / p \mathrm{MOS}$ gains and the threshold voltages of the $n \mathrm{MOS}, p \mathrm{MOS}$ transistors.

$\boldsymbol{B}_{\boldsymbol{n}} / \boldsymbol{\beta}_{\boldsymbol{p}}$ Ratio

The β_{n} (gain of n MOS) / β_{p} (gain of p MOS) ratio determines the switching point of the CMOS inverter.

Recall that

$$
\beta=\frac{\mu \varepsilon}{\mathrm{t}_{\mathrm{ox}}} \frac{\mathrm{~W}}{\mathrm{~L}} .
$$

If we assume that the $n \mathrm{MOS}$ and $p \mathrm{MOS}$ transistors have equal W / L ratios, then

$$
\frac{\beta_{n}}{乃_{p}}=\frac{\frac{\mu_{n} \varepsilon}{\mathrm{t}_{\mathrm{ox}}} \frac{\mathrm{~W}_{n}}{\mathrm{~L}_{n}}}{\frac{\mu_{p} \varepsilon}{\mathrm{t}_{\mathrm{ox}}} \frac{\mathrm{~W}_{p}}{\mathrm{~L}_{p}}}=\frac{\mu_{n}}{\mu_{p}}=\frac{\text { electron mobility }}{\text { hole mobility }} .
$$

In silicon, the ratio μ_{n} / μ_{p} is usually between 2 to 3 .
This means, that if

$$
\mathrm{L}_{n}=\mathrm{L}_{p},
$$

then
W_{p} must be 2 to 3 times W_{n}
in order for

$$
\beta_{n}=\beta_{p} .
$$

Calculate the switching point of a static load inverter as function of β_{n} / β_{p} :
In region C , already know $n \mathrm{MOS}$ device is saturated from previous analysis.

For p MOS to be saturated need:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{SD} p}>\mathrm{V}_{\mathrm{SG} p}-\left|\mathrm{V}_{\mathrm{T} p}\right| \\
\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {out }}>\mathrm{V}_{\mathrm{DD}}-0 \mathrm{~V}-\left|\mathrm{V}_{\mathrm{T} p}\right| \\
\mathrm{V}_{\text {out }}<\left|\mathrm{V}_{\mathrm{T} p}\right| \\
\text { Not true!!! }
\end{gathered}
$$

(If $V_{\text {out }}$ in region C is about $\backslash f\left(V_{D D}, 2\right)$
and $\frac{\mathrm{V}_{\mathrm{DD}}}{2}>\left|\mathrm{V}_{\mathrm{T} p}\right|$
(typically this is true))
$\therefore p$ MOS must be in linear region
Then

$$
\mathrm{I}_{\mathrm{D} n}=\frac{\beta_{n}}{2}\left(\mathrm{~V}_{\mathrm{GS} n}-\mathrm{V}_{\mathrm{T} n}\right)^{2}=\frac{\beta_{n}}{2}\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{T} n}\right)^{2}
$$

and

$$
\mathrm{I}_{\mathrm{D} p}=\frac{\beta_{p}}{2}\left(2\left(\mathrm{~V}_{\mathrm{SG} p}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right) \mathrm{V}_{\mathrm{SD} p}-\mathrm{V}_{\mathrm{SD} p}^{2}\right)
$$

$$
\mathrm{I}_{\mathrm{D} p}=\frac{\mathrm{B}_{p}}{2}\left(2\left(\mathrm{~V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {out }}\right)-\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{out}}\right)^{2}\right)
$$

Equate $\mathrm{I}_{\mathrm{D} n}=\mathrm{I}_{\mathrm{D} p}$ and solve for $\mathrm{V}_{\text {out }}$.

$$
\mathrm{V}_{\text {out }}=\left|\mathrm{V}_{\mathrm{T} p}\right|+\sqrt{\left(\mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}-\frac{\beta_{n}}{\beta_{p}}\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{T} n}\right)^{2}}
$$

Can also solve for β_{n} / β_{p},

$$
\frac{\beta_{n}}{\beta_{p}}=\frac{\left(\mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}-\left(\mathrm{V}_{\text {out }}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}}{\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{T} n}\right)^{2}}
$$

Consider again

$$
\frac{\beta_{n}}{\beta_{p}}=\frac{\left(\mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}-\left(\mathrm{V}_{\text {out }}-\left|\mathrm{V}_{\mathrm{T} p}\right|\right)^{2}}{\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{T} n}\right)^{2}}
$$

for the pseudo-nMOS inverter.
Let $\left|\mathrm{V}_{\mathrm{T} p}\right|=\mathrm{V}_{\mathrm{T} n}=0.2 \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}=\frac{\mathrm{V}_{\mathrm{DD}}}{2}$. Then, for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$,

$$
\frac{\beta_{n}}{\beta_{p}} \approx 6.1!!!
$$

Note that this is very different result from the CMOS inverter case!
If $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, but the value of $\mathrm{V}_{\mathrm{T} n}=\left|\mathrm{V}_{\mathrm{T} p}\right|$ is unchanged (i.e., 1 V in the above example), then

$$
\frac{\beta_{n}}{\beta_{p}} \approx 11.5
$$

for a switching point equal to $\frac{V_{D D}}{2}$.

The β_{n} / β_{p} ratio depends on the absolute value of $V_{D D}$! This means that the operation of the pseudo- n MOS inverter will NOT scale with V_{DD} (for a given CMOS technology).

For the CMOS inverter, the β_{n} / β_{p} ratio for a switching point of $\mathrm{V}_{\mathrm{DD}} / 2$ is independent of V_{DD} so its operation will scale with supply voltage. This is a another big advantage of CMOS technology.

Not unusual for static CMOS circuits to operate over a very large range of power supply voltages, i.e., 2.0 V to 6.0 V is common.

