More Complex Gates

$$
\mathrm{F}=\overline{\mathrm{AB}+\mathrm{CD}} \Rightarrow \mathrm{~N}_{\text {tree }} \text { will provide } 0 \text { 's, } \mathrm{P}_{\text {tree }} \text { will provide } 1 \text { 's }
$$

0 's of function F is $\overline{\mathrm{F}}, \Rightarrow \overline{\mathrm{F}}=\overline{\overline{\mathrm{AB}+\mathrm{CD}}}=\mathrm{AB}+\mathrm{CD}$
n MOS transistors need high true inputs, so it is desirable for all input variables to be high true, just as above.

Likewise, a Ptree will provide 1's.

$$
\mathrm{F}=\overline{\mathrm{AB}+\mathrm{CD}}, \quad \text { need a form involving } \overline{\mathrm{A}}, \overline{\mathrm{~B}}, \overline{\mathrm{C}}, \overline{\mathrm{D}}
$$

Apply DeMorgan's Theorem:
$\mathrm{F}=\overline{\mathrm{AB}} \cdot \overline{\mathrm{CD}}=(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \cdot(\overline{\mathrm{C}}+\overline{\mathrm{D}})$
Implementation \Rightarrow

Can also use K-maps:

$\mathrm{F}=\overline{\mathrm{AB}+\mathrm{CD}} \quad$| 1 | 1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 |

For $\mathrm{N}_{\text {tree }}$, minimize 0's; for $\mathrm{P}_{\text {tree }}$, minimize 1's
CD

$$
\mathrm{N}_{\text {tree }}=\mathrm{AB}+\mathrm{CD}
$$

$$
\begin{aligned}
\mathrm{P}_{\text {tree }} & =\overline{\mathrm{A}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \overline{\mathrm{D}}+\overline{\mathrm{B}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{B}} \cdot \overline{\mathrm{D}} \\
& =\overline{\mathrm{A}}(\overline{\mathrm{C}}+\overline{\mathrm{D}})+\overline{\mathrm{B}}(\overline{\mathrm{C}}+\overline{\mathrm{D}}) \\
& =(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \cdot(\overline{\mathrm{C}}+\overline{\mathrm{D}})
\end{aligned}
$$

Tri State Inverter

" Z " is high impedance state

Implementation? Here is one method:

Alternate representations:

or

where the connection for $\overline{\mathrm{EN}}$ is understood or implied, EN still needs to somehow be provided in the physical circuit

Transmission Pass Gate Logic

Will require
(4 transistors for two pass gates) $+(2$ transistors for inversion of $S)$

$$
=6 \text { transistors total }
$$

This technique uses less transistors than a design using normal gates, but is nonrestoring. Pass gate logic has no drive capability. Drive comes from orginal A, B inputs.

A D-Latch using transmission gates:

when

$$
\begin{array}{ll}
\mathrm{CLK}=1, & \mathrm{Q}=\mathrm{D} \\
\mathrm{CLK}=0, & \mathrm{Q}=\mathrm{Q}_{\mathrm{old}}
\end{array}
$$

Recall flip-flop construction from CAD course (edge triggered device) \rightarrow two latches in a master-slave arrangement are required

Falling edge triggered

How would a D-Latch with an asynchronous reset be implemented?

Note: when connected to inverted terminal of transmission gate, then the inverter is implied

Introduction to Static Load Inverters

1)

When $I=1$, inverter dissipates static
power.

Switching point of inverter depends on ratio of R to R_{ON} (on resistance of n MOS device.
$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{OL}} \approx 0 \mathrm{~V}$, depends on ratio of $\mathrm{R} / \mathrm{R}_{\mathrm{on}}$

Note: output can swing from 0 V to 5 V (Vdd)
2)

Load is enhancement-mode $n \mathrm{MOS}$ device.

Again, static power dissipation occurs when $\mathrm{I}=1$.

Note: output swings from $\approx 0 \mathrm{~V}$ to $\left(\mathrm{Vdd}-\mathrm{V}_{\mathrm{T} n}\right)$
Using a transistor as a load tends to require much less silicon area than a resistor.
$\mathrm{V}_{\mathrm{OH}}=\mathrm{Vdd}-\mathrm{V}_{\mathrm{T} n}$,
$\mathrm{V}_{\mathrm{OL}} \approx 0 \mathrm{~V}$, depending on ratio of R_{ON} of two enhancement devices

Depletion-mode $n \mathrm{MOS}$

n MOS device with $\mathrm{V}_{\mathrm{T} n}<0 \mathrm{~V}$ (negative threshold voltage). Device is always conducting if $\mathrm{V}_{\mathrm{GS}}>0 \mathrm{~V}$.
3)

$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ always

Load device is always on, looks like a load resistor.

Dissipates static power when $\mathrm{I}=1$
$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}} \approx 0 \mathrm{~V}$, depending on ratio of $\mathrm{R}_{\mathrm{ON}, \text { dep }}$ to $\mathrm{R}_{\mathrm{ON}, \text { enh }}$.
Depletion-mode devices were used before it was economical to put both p-type and n-type devices on the same die.
4) $p \operatorname{MOS}$ device as static load

Here also the load device is always on (conducting).

Dissipates static power when $\mathrm{I}=1$.
$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}} \approx 0 \mathrm{~V}$, depending on ratio of $\mathrm{R}_{\mathrm{ON}, p}$ to $\mathrm{R}_{\mathrm{ON}, n}$

Basic MOS Device Equations

The n MOS device is a four terminal device: Gate, Drain, Source, Bulk.
Bulk (substrate) terminal is normally ignored at schematic level, usually tied to ground for the $n \mathrm{MOS}$ case. In analog applications, however, the bulk terminal may not be ignored.

Gate controls channel formation for conduction between Drain and Source. Drain at higher potential than Source - Source usually tied to GND to act as pull-down (n MOS).

Three regions of operations - first-order (ideal) equations:

Cutoff region

$$
\mathrm{I}_{\mathrm{D}}=0 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{T} n}(n \mathrm{MOS} \text { threshold voltage })
$$

Linear region

$$
\mathrm{I}_{\mathrm{D}}=\beta\left(\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T} n}\right) \mathrm{V}_{\mathrm{DS}}-\frac{\mathrm{V}_{\mathrm{DS}}^{2}}{2}\right) \quad 0<\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T} n}
$$

Note: I_{D} is linear with respect to $\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T} n}\right)$ only when

$$
\frac{\mathrm{V}_{\mathrm{DS}}{ }^{2}}{2} \text { is small. }
$$

Saturation region

$$
\mathrm{I}_{\mathrm{D}}=\frac{\beta}{2}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T} n}\right)^{2} \quad 0<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T} n}<\mathrm{V}_{\mathrm{DS}}
$$

Device parameters:

$B=$ transistor gain factor, dependent on process parameters and device geometry
$\beta=\left(\frac{\mu \varepsilon}{t_{\mathrm{ox}}}\right)\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{\text {under control of the designer }}^{\text {process dependent, constant }}$
As W/L increases, effective R_{ON} of device decreases
$\mu=$ surface mobility of the carriers in the channel
$\varepsilon=$ permittivity of the gate insulator
$t_{0 x}=$ thickness of the gate insulator
See Figure 2.5, 2.8 concerning μ, ε, and t_{ox}
SPICE represents β by a factor given by

$$
\mathrm{K}^{\prime}=\mu \mathrm{C}_{\mathrm{ox}}=\mu \frac{\varepsilon}{\mathrm{t}_{\mathrm{ox}}}=\mathbf{K} \mathbf{P}
$$

So,

$$
\mathrm{I}_{\mathrm{D}}=\frac{\mathrm{K}^{\prime}}{2} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T} n}\right)^{2} ;
$$

VI characteristic

Things to note:
In the "linear" region, I_{D} becomes less and less linear with V_{GS} as V_{DS} becomes large. This is because the $\frac{\mathrm{V}_{\mathrm{DS}}{ }^{2}}{2}$ term in the linear region grows large.

Higher V_{GS} values increase channel conductance allowing for higher values of I_{D} for a given V_{DS}.

Predicting ID values with ideal equations

In saturation region,

$$
\mathrm{I}_{\mathrm{D}}=\mathrm{K}^{\prime}\left(\frac{\mathrm{W}}{\mathrm{~L}}\right) \frac{\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}}{2}
$$

If we have

then we can calculate I_{D} based on $\mathrm{V}_{\mathrm{in}}, \mathrm{K}^{\prime}, \mathrm{V}_{\mathrm{T}}$ (MOSFET parameters).

In specifying W , L values, these are often given in a dimensionless unit called lambda.

When mapping the transistor schematic/layout to a particular technology, the actual W , L will be calculated as:

$$
\begin{array}{ll}
\mathrm{W}^{\prime}(\text { actual, microns }(\mu)) & =\mathrm{W} \times \text { lambda (microns) } \\
\mathrm{L}^{\prime} \text { (actual, microns) } & =\mathrm{L} \times \text { lambda (microns) }
\end{array}
$$

So lambda is a scaling factor. Note that the ratio $\frac{\mathrm{W}}{\mathrm{L}}$ is what is important, and that

$$
\frac{\mathrm{W}^{\prime}}{\mathrm{L}^{\prime}}=\frac{\mathrm{W} \times \text { lambda }}{\mathrm{L} \times \text { lambda }}=\frac{\mathrm{W}}{\mathrm{~L}} .
$$

Scaling factor lambda allows transistor $\frac{\mathrm{W}}{\mathrm{L}}$ values specified in schematics to be technology independent.

For MOSIS foundry vendors,

$$
2.0 \mu \text { technology } \Rightarrow \text { lambda }=1.0
$$

1.2μ technology \Rightarrow lambda $=0.6$
0.8μ technology \Rightarrow lambda $=0.4$.
Note, however, that lambda is not always $\frac{1}{2}$ technology miniumum feature size (line width). Scaling factor lambda is foundry/silicon vendor dependent.

In schematic,

n MOSFET layout:

In digital logic, typically will draw all transistors with the minimum gate length ($=2 \times$ lambda) and vary the width.

Larger $\mathrm{W} \Rightarrow$ larger transconductance (more current flow for given gate voltage), higher gate capacitance

During fabrication process, the actual width and length of the channel can be reduced by diffusion from the bulk, source, and drain into the device channel.

SPICE has some MOSFET model parameters to account for this effect, LD and WD, where the actual the actual length and width is calculated as

$$
\begin{gathered}
\mathrm{L}_{\text {effective }}=\mathrm{L}_{\text {drawn }}-2 \times \mathrm{LD} \\
\mathrm{~W}_{\text {effective }}=\mathrm{W}_{\text {drawn }}-2 \times \mathrm{WD}
\end{gathered}
$$

If LD, WD parameters not specified in the model, then SPICE assumes they are 0.

