MOS Transistors as Switches

For *n*MOS switch, source is typically tied to ground and is used to *pull-down* signals:

when Gate = 1, Out = 0, (OV) when Gate = 0, Out = Z (high impedance)

For *p*MOS switch, source is typically tied to Vdd, used to *pull* signals *up*:

Note: The MOS transistor is a symmetric device. This means that the drain and source terminals are interchangeable. For a conducting *n*MOS transistor, $V_{DS} > 0V$; for the *p*MOS transistor, $V_{DS} < 0V$ (or $V_{SD} > 0V$).

The CMOS Inverter

Note: Ideally there is <u>no</u> static power dissipation. When "I" is fully is *high* or fully *low*, <u>no</u> current path between Vdd and GND exists (the output is usually tied to the gate of another MOS transistor which has a very high input impedance).

Power is dissipated as "I" transistions from $0 \rightarrow 1$ and $1 \rightarrow 0$ and a momentory current path exists between Vdd and GND. Power is also dissipated in the charging and discharging of gate capacitances.

Parallel Connection of Switches

- Y

Series Connection of Switches

NAND Gate Design

p-type transistor tree will provide "1" values of logic function *n*-type transistor tree will provide "0" values of logic function

Truth Table (NAND):

K-map (NAND):

AB	
00	1
01	1
10	1
11	0

NAND circuit example:

August 25, 1998

page 5

NOR Gate Design

p-type transistor tree will provide "1" values of logic function *n*-type transistor tree will provide "0" values of logic function

Truth Table:

K-map:

AB	
00	1
01	0
10	0
11	0

NOR circuit example:

What logic gate is this?

where $V_T = 0.7V$ to 1.0V (i.e., threshold voltage will vary) output voltage = 4.3V to 4.0V, a *weak* "<u>1</u>" The *n*MOS transistor will stop conducting if $V_{GS} < V_T$. Let $V_T = 0.7V$,

As source goes from $0V \rightarrow 5V$, V_{GS} goes from $5V \rightarrow 0V$.

When $V_S > 4.3V$, then $V_{GS} < V_T$, so switch stops conducting.

 V_D left at 5V - V_T = 5V - 0.7V = 4.3V or Vdd - V_T .

What about *n*MOS in series?

Only one threshold voltage drop across series of nMOS transistors

For *p*MOS transistor, V_T is <u>negative</u>. *p*MOS transistor will conduct if $|V_{GS}| > |V_{Tp}|$ ($V_{SG} > |V_{Tp}|$), or $V_{GS} < V_{Tp}$

August 25, 1998

How will *p*MOS pass a "0"?

conducting

When $|V_{GS}| < |V_{Tp}|$, stop conducting

 $V_{GS} < V_{Tp}$ or $|V_{GS}| > |V_{Tp}|$

-5V < -0.7V 5V > 0.7V

So when $|V_{GS}| < |-0.7V|$, V_D will go from $5V \rightarrow 0.7V$, a weak "<u>0</u>"

How are both a strong "1" and a strong "0" passed?

Transmission gate pass transistor configuration

About that AND Gate...

Instead use this,

