MOS Transistors as Switches

n MOS transistor:
Closed (conducting) when Gate $=1($ Vdd, 5 V$)$

Open (non-conducting) when Gate $=0($ ground, 0 V$)$
pMOS transistor:
Closed (conducting) when Gate $=0($ ground, 0 V$)$

Open (non-conducting) when Gate $=1(\mathrm{Vdd}, 5 \mathrm{~V})$

For $n \mathrm{MOS}$ switch, source is typically tied to ground and is used to pull-down signals:

For $p \mathrm{MOS}$ switch, source is typically tied to Vdd, used to pull signals up:

when Gate $=0$, Out $=1(\mathrm{Vdd})$
when Gate $=1$, Out $=\mathrm{Z}$ (high impedance $)$

Note: The MOS transistor is a symmetric device. This means that the drain and source terminals are interchangeable. For a conducting $n \mathrm{MOS}$ transistor, $\mathrm{V}_{\mathrm{DS}}>$ 0 V ; for the $p \mathrm{MOS}$ transistor, $\mathrm{V}_{\mathrm{DS}}<0 \mathrm{~V}$ (or $\mathrm{V}_{\mathrm{SD}}>0 \mathrm{~V}$).

The CMOS Inverter

Note: Ideally there is no static power dissipation. When "I" is fully is high or fully low, no current path between Vdd and GND exists (the output is usually tied to the gate of another MOS transistor which has a very high input impedance).

Power is dissipated as "I" transistions from $0 \rightarrow 1$ and $1 \rightarrow 0$ and a momentory current path exists between Vdd and GND. Power is also dissipated in the charging and discharging of gate capacitances.

Parallel Connection of Switches

$$
\mathrm{Y}=0 \text {, if } \underbrace{\underbrace{2}}_{\underbrace{\mathrm{A}}_{\mathrm{A}+\mathrm{B}} \text { or } \mathrm{B}}=1
$$

$\mathrm{Y}=1$ if A or $\mathrm{B}=0$

Series Connection of Switches

NAND Gate Design

p-type transistor tree will provide "1" values of logic function n-type transistor tree will provide " 0 " values of logic function

Truth Table (NAND):

AB	
00	1
01	1
10	1
11	0

NAND circuit example:

$$
\begin{aligned}
& \mathrm{P}_{\text {tree }}=\overline{\mathrm{A}}+\overline{\mathrm{B}} \\
& \mathrm{~N}_{\text {tree }}=\mathrm{A} \cdot \mathrm{~B}
\end{aligned}
$$

NOR Gate Design

p-type transistor tree will provide " 1 " values of logic function n-type transistor tree will provide " 0 " values of logic function

Truth Table:

AB	
00	1
01	0
10	0
11	0

NOR circuit example:

$$
\begin{aligned}
& \mathrm{P}_{\text {tree }}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \\
& \mathrm{~N}_{\text {tree }}=\mathrm{A}+\mathrm{B}
\end{aligned}
$$

What logic gate is this?

Answer: AND function, but poor design!
Why? nMOS switches cannot pass a logic " 1 " without a threshold voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$ drop.

where $\mathrm{V}_{\mathrm{T}}=0.7 \mathrm{~V}$ to 1.0 V (i.e., threshold voltage will vary) output voltage $=4.3 \mathrm{~V}$ to 4.0 V , a weak "1"

The n MOS transistor will stop conducting if $\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T}}$. Let $\mathrm{V}_{\mathrm{T}}=0.7 \mathrm{~V}$,

As source goes from $0 \mathrm{~V} \rightarrow 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}$ goes from $5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$.
When $\mathrm{V}_{\mathrm{S}}>4.3 \mathrm{~V}$, then $\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T}}$, so switch stops conducting.
V_{D} left at $5 \mathrm{~V}-\mathrm{V}_{\mathrm{T}}=5 \mathrm{~V}-0.7 \mathrm{~V}=4.3 \mathrm{~V}$ or $\mathrm{Vdd}-\mathrm{V}_{\mathrm{T}}$.

What about n MOS in series?

Only one threshold voltage drop across series of $n \mathrm{MOS}$ transistors

For $p \mathrm{MOS}$ transistor, V_{T} is negative.
$p \mathrm{MOS}$ transistor will conduct if $\left|\mathrm{V}_{\mathrm{GS}}\right|>\left|\mathrm{V}_{\mathrm{T} p}\right|\left(\mathrm{V}_{\mathrm{SG}}>\left|\mathrm{V}_{\mathrm{T} p}\right|\right)$,

$$
\text { or } \mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T} p}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T} p}=-0.7 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}-5 \mathrm{~V}=-5 \mathrm{~V}
\end{aligned}
$$

conducting

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T} p} \text { or }\left|\mathrm{V}_{\mathrm{GS}}\right|>\left|\mathrm{V}_{\mathrm{T} p}\right| \\
& -5 \mathrm{~V}<-0.7 \mathrm{~V} \quad 5 \mathrm{~V}>0.7 \mathrm{~V}
\end{aligned}
$$

How will p MOS pass a " 0 "?

When $\left|\mathrm{V}_{\mathrm{GS}}\right|<\left|\mathrm{V}_{\mathrm{T} p}\right|$, stop conducting

So when $\left|\mathrm{V}_{\mathrm{GS}}\right|<|-0.7 \mathrm{~V}|$, V_{D} will go from $5 \mathrm{~V} \rightarrow \mathbf{0 . 7 V}$, a weak " $\underline{0}$ "

How are both a strong " 1 " and a strong " 0 " passed?
Transmission gate pass transistor configuration

When $\mathrm{I}=1$,
$\mathrm{B}=$ strong 1 , if $\mathrm{A}=1$;
$\mathrm{B}=$ strong 0 , if $\mathrm{A}=0$

When $I=0$, non-conducting

About that AND Gate...

Instead use this,

