
1

ALTERA Technical Papers

2

Contents

I. Programmable Logic Increases Bandwidth and Adaptability in Communications Equipment7

II. Managing Power in High Speed Programmable Logic.. 11

Abstract .. 11
1. Introduction.. 11
2. The Components of Power Consumption .. 11
3. Estimating Power Consumption...12

3.1 Standby Power ..12
3.2 Internal Power...13
3.3 External Power ...13

4. Managing Power in Programmable Logic ...14
4.1 Automatic Power-Down ...14
4.2 Programmable Speed/Power Control ...14
4.3 Pin-Controlled Power Down...15
4.4 3.3-volt Devices..15
4.5 3.3-Volt / 5.0-Volt Hybrid Devices ...16

Conclusion ...17

III. PLD Based FFTs ..18

Abstract ..18
1. Introduction..18
2. FFT Megafunctions..18
3. Altera FLEX 10K PLDs...19
4. Performance Data...20
5. Discussion ..21
Conclusions..22

IV. The Library of Parameterized Modules (LPM)..23

Introduction..23
1. The History of LPM...23
2. The Objective of LPM ...24

2.1 Allow Technology-Independent Design Entry..24
2.2 Allow Efficient Design Mapping..24
2.3 Allow Tool-Independent Design Entry ...24
2.4 Allow specification of a complete design ...24

3. The LPM Functions..24
4. Design Flow with LPM..25
5. Efficient Technology Mapping...26
6. The Future of LPM...27
Conclusion ...28

V. A Programmable Logic Design Approach to Implementing PCI Interfaces ..30

1. Customizable Functionality ...30
2. Description of PCI Macrofunctions ...30
3. Brief Introduction to AHDL...31
4. Modifying/Customizing the Macrofunctions ...33
5. Adjusting the Width of Address/Data Buses ..34
6. Other Customizations...37
7. Hardware Implementation..37
Conclusion ...39

3

Obtaining the Macrofunctions ..39

VI. Altera’s PCI MegaCore Solution ...40

VII. A VHDL Design Approach to a Master/Target PCI Interface..43

ABSTRACT...43
1. INTRODUCTION ...43
2. ARCHITECTURE CONSIDERATIONS ..44

2.1 Performance..44
2.2 Interoperability ...45
2.3 Vendor Independence..45
2.4 Design cycle ...45

3. System Methodology ...45
3.1 Hardware Selection...45
3.2 Design Entry ...45
3.3 PLD Selection...46
3.3 EDA tool selection..46

4. IMPLEMENTATION...46
4.1 Implementing Functionality..46
4.2 Implementing Burst Mode..47

5. PCI EXPERIENCE ..47
6. FUTURE ROADMAP...48
Conclusion ...49

Author biographies ...49

VIII. Interfacing a PowerPC 403GC to a PCI Bus ..50

Introduction..50
Conclusion ...59

References ..59

IX. HIGH PERFORMANCE DSP SOLUTIONS IN ALTERA CPLDS ...60

INTRODUCTION ...60
1. HIGH PERFORMANCE DSP...60
2. VECTOR PROCESSING: An Alternative ‘MAC’ Architecture..61

2.1 LOOK-UP TABLE (LUT) BASED ARCHITECTURE...62
3. FIR FILTERS USING VECTOR MULTIPLIERS...65
4. IMAGE PROCESSING USING VECTOR MULTIPLIERS...66

4.1 OPTIMISED DCT FOR USE IN FLEX10K..66
5. FAST FOURIER TRANSFORMS (FFTs)...68
CONCLUSION..70

REFERENCES...70

X. Enhance The Performance of Fixed Point DSP Processor Systems...71

Introduction..71
1. DSP Design Options...71
2. The Application of Programmable Logic...72
3. Arithmetic Capability of Programmable Logic..73
4. FIR Filters in PLDs..74
5. Using the Vector Multiplier in FIR Filters ...78
6. Case Studies of PLDs used as DSP Coprocessors..79
7. System Implementation Recommendations ...83

XI. HDTV Rate Image Processing on the Altera FLEX 10K...84

Introduction..84

4

1. Altera FLEX 10K Architecture ..85
2. Megafunction Development...87
3. Image Processing Megafunctions ..87
Conclusions..89

XII. Automated Design Tools for Adaptive Filter Development...90

Introduction..90
1. Filter Building Blocks..90
2. Filter Design and Implementation..91
3. Transversal Filters ..93
4. LPM Implementation Examples ..93
Conclusions..95

References ..95

XIII. Building FIR Filters in LUT-Based Programmable Logic ...96

Introduction..96
1. LUT-Based PLD Architecture..96
2. FIR Filter Architecture ...97
3. Parallel FIR Filter Performance ...101
4. Serial FIR Filters..102
5. Serial Filter Performance and Resource Utilization...103
6. Pipelining ...104
7. FIR Filter Precision (Input Bit Width and Number of Taps)..104
8. LUT-Based PLDs as DSP Coprocessors ..105

XIV. Automated FFT Processor Design..106

Abstract ..106
1. INTRODUCTION ...106
2. FFT DESIGN ...106
3. FFT PARAMETERS..107
4. FFT PROCESSOR ARCHITECTURE..107
5. FFT IMPLEMENTATION...108
6. FFT DESIGN CONSIDERATIONS..109

6.1 Prime FFT Decomposition ...109
6.2 CORDIC FFT Core...109
6.3 Higher Radix... 110

7. IFFT PROCESSING.. 110
8. HIGHER PERFORMANCE FFTs... 110
CONCLUSIONS.. 112

REFERENCES... 112

XV. Implementing an ATM Switch Using Megafunctions Optimized for Programmable Logic................ 113

1. ATM Background... 113
2. ATM Megafunction Blocks .. 116
3. Utilization of Embedded Array Blocks .. 116
4. Logic Cell Usage.. 117
5. Applications ... 117

XVI. Incorporating Phase-Locked Loop Technology into Programmable Logic Devices 118

1. ClockLock and ClockBoost Features in FLEX 10K and MAX 7000S.. 118
2. Specifying ClockLock and ClockBoost Usage in MAX+PLUS II .. 118
3. Details of ClockLock Usage ..120
4. Timing Analysis ...121
5. Delay Matrix ..121

5

6. Setup/Hold Matrix..122
7. Registered Performance ...122
8. Simulation ..122
9. ClockLock Status ...123
10. System Startup Issues...124
11. Multi-clock System Issues ...125

11.1 Case 1..126
11.2 Case 2..126

12. ClockLock and ClockBoost Specifications..127
13. Duty Cycle ...128
14. Clock Deviation ...128
15. Clock Stability..128
16. Lock Time ..128
17. Jitter..128
18. Clock Delay..128
19. Board Layout..129
Conclusion ...131

References ..131

XVII. Implementation of a Digital Receiver for Narrow Band Communications Applications.132

Abstract ..132
1. Introduction..132
2. Digital IF Receiver architecture. ..132

2.1 PLD Baseband processing functions ..133
3. PLD design approach. ..134
4. PLD Implementation..134

4.1 Matched Filters ...134
4.2 Timing Estimator ..134
4.3 Interpolators..135
4.4 Decimators..136
4.5 PLD partitioning...136

5. Logic Synthesis ..136
6. BER performance and implementation loss...138
Conclusions..139

References ..139

XVIII. Image Processing in Altera FLEX 10K Devices ..140

Introduction..140
1. Why Use Programmable Logic? ..140
2. Altera FLEX 10K CPLD..140
3. Image Transform Examples ...141

3.1 Walsh Transform...141
3.2 Discrete Cosine Transform ...142
3.3 Implementation...144

4. Filters in FLEX Devices...146
Conclusion ...148

References ..148

XIX. The Importance of JTAG and ISP in Programmable Logic..149

1. Packaging, Flexibility Drive In-System Programmability Adoption ...149
2. Prototyping Flexibility ...149
3. ISP Benefits to Manufacturing...150
4. Decreasing Board Size, Increasing Complexity Drive Adoption of JTAG Boundary Scan..........150
5. JTAG Defined ..150

6

6. MAX 9000 Combines ISP and JTAG ..151
Author Biography ..152

XX. Reed Solomon Codec Compiler for Programmable Logic ..153

1. INTRODUCTION ...153
2. PARAMETERS..153

2.1 TOTAL NUMBER OF SYMBOLS PER CODEWORD ...153
2.2 NUMBER OF CHECK SYMBOLS...153
2.3 NUMBER OF BITS PER SYMBOL ...153
2.4 IRREDUCIBLE FIELD POLYNOMIAL...153
2.5 FIRST ROOT OF THE GENERATOR POLYNOMIAL...154

3. DESIGN FLOW...154
4. RESOURCE REQUIREMENTS...154
5. CALCULATING SYSTEM PERFORMANCE...155

5.1 DISCRETE DECODER ...155
5.2 STREAMING DECODER ...156

CONCLUSIONS..158
REFERENCES...158

7

I. Programmable Logic Increases Bandwidth and Adaptability in

Communications Equipment

Robert K. Beachler
Manager, Strategic Marketing and Communications

Altera Corporation

The transmission and distribution of information, called communications, is a cornerstone in today's
information age. The networking of computers is still in its infancy, and possibilities for worldwide
computing and transmission of information are just beginning to be explored. As not only the business user,
but the home user as well, develops a taste for real-time, worldwide access of information, the demand for
communications services will increase. Therefore, the bandwidth of communications equipment will need
to undergo tremendous increases in order to keep up with the demands of corporations and home users.
Companies that develop communications products, such as LANs, WANs, bridges, routers, hubs, and PBX
systems, are continually striving to increase the amount of information that can be transmitted, and to
increase the speed of transmission.

A pivotal portion of this engineering task is the development of efficient switching and scheduling
algorithms for the steering of data through complex systems. Due to the performance requirements of
information transmittal, communications designs are implemented in fixed silicon solutions, offering high-
performance for a defined set of data packet and loading requirements. However, network traffic, loading,
and even the basic data structures of information may change over time, and these fixed solutions then
become less optimal and must be replaced.

Programmable logic has been used extensively in the communications sector due to its unique combination
of speed and flexibility, enabling engineers designing communications systems to rapidly produce new
products which address shifting communications standards and system requirements. However, the
onslaught of new communications products does not address two important issues facing communications
systems. First, for the MIS manager and service provider, new products are problematic in that they do not
protect existing investments in high-priced hardware. MIS managers wish to preserve their investments in
communications equipment and would prefer to have their systems be upgraded as demand increases and
new technologies become available, rather than installing entirely new systems. Secondly, these new
products do little to alleviate the near-term difficulty of adapting real-time to changing networking needs.
Reprogrammable logic device may help to mitigate these nagging problems. PLDs can facilitate the
smooth migration of new technologies, such as ATM, into existing systems, while also addressing the time-
to-market concerns of network providers. Re-configurable SRAM-based programmable logic devices
provide the means to implement adaptable communications hardware which can be automatically configured
to implement today's communications standards, such as Ethernet, and simply re-configured, in real time, to
adapt to emerging communications standards such as 25 Mbps Desktop ATM.

In-Circuit Reconfigurability holds promise to solve not only the investment issue of the MIS manager, but
also address the performance aspects of switching systems. If system requirements change or traffic
patterns fluctuate, PLDs allow the designer to change the characteristics of the switch in the field. This
allows for tailoring the switch to meet the changing needs of the environment.

The loading of networks is a dynamic problem with many factors affecting the performance. These include
number of users, data sizes being transmitted, peak vs. off-peak usage, protocol used, and the possibility of
physical connection interruption. These factors make modeling and simulating throughput a difficult
problem. This then begs the question of how to develop an optimally performing communications system
when only the boundary conditions, and not the actual conditions are known. The creation of hardware
prototypes using programmable logic is quite helpful in exploring the possibilities and tuning the system.

8

As an example, let’s examine the scheduling of output packets in an ATM switching system. ATM systems
are a voracious consumer of programmable logic because of the switching speeds required. ATM packets
are 53 bytes in length, small in comparison to other communications protocols, and a large number of these
packets need to be switched and sent on their way in a short amount of time. Implementing the scheduling
algorithm in software is too slow to meet performance demands. The algorithm used must therefore be
implemented in hardware, and must compromise between performance and implementation complexity.
But because of the changing standards and different factors affecting switching system requirements,
programmable logic is an ideal solution.

Shown in Figure 1 is a block diagram of a portion of an ATM switching system. The buffer and scheduling
portion of the system is used to buffer the incoming packets coming from the switch fabric and schedule
them for output transmission. The scheduling of these packets is complicated by the fact that ATM systems
can carry many types of data, from real-time voice and video transmissions requiring immediate attention to
less important data file transfer information. All of these packets are routed through the switch fabric and at
any given time, any number of packets may have the same output port destination, which is why they must
be stored in buffers and await scheduling to be sent to the output port. The packets are placed into buffers
dependent upon their virtual channel identifier. Real time packets, such as voice and video transmissions,
are placed into different channels then data traffic. Each buffer can have multiple channels of information
buffered in them.

Figure 1. ATM Switching System

Scheduler

FIFOs

Concentrator

1

Distributor

1

Scheduler

FIFOs

Concentrator

1

Distributor

1

Switch Fabric

Buffers
and

Scheduling

Output Port Output Port

A representation of this is shown in Figure 2. In this case there are “n” number of queues, some for real-
time transmissions, and some for ABR traffic. The packets stored in these queues must be scheduled to the
output port dependent upon their priorities, with real-time queues getting higher priority then the ABR
queues. These queues can be thought of as FIFOs, and indeed are implemented as such in hardware.

9

Figure 2. Data Flow Diagram of Packet Buffering and Scheduling

Packet Transmission

Scheduling Algorithm

Real-Time Queues

ABR Queues

Packets from
Switch Fabric

The size of these FIFOs has a direct relationship to the speed at which the scheduler can get these packets to
the output port. The faster the scheduler, the less buffering needed in FIFOs. As opposed to using fixed,
off-the-shelf FIFOs the FIFO buffers can be emulated using dual port SRAM and portions of a
programmable logic device to keep track of the head and tail address of the FIFOs. In this manner, the sizes
of the FIFOs are dynamic and can be changed with the needs of the network.

Each queue being buffered in these FIFOs has a priority associated with it. The real-time traffic needs a
guaranteed bit-rate (GBR) and the data transmission needs a lesser rate of speed, or available bit-rate (ABR).
Therefore the design must have two types of queues for buffering. Namely, real-time queues and space-
available queues. The number of ABR and GBR queues, while fixed in most applications, could be
reconfigured on-the-fly as network loading changes. For example, during daytime usage the number of
GBR queues could be quite high for voice and video, whereas in the evenings the ABR may need to be
increased to accommodate the backing-up of a large number of computer systems.

The scheduling of the packets themselves for transmission may also need to be adapted. In this case, a
weighted round robin scheduling algorithm may be used initially to schedule the GBR and ABR packets.
However as the loading on the network changes, alternate algorithms may be needed. Since the scheduling
algorithm is by performance necessity implemented in hardware, to implement a new algorithm would
require entirely new hardware. However, by using reconfigurable programmable logic, a new algorithm
could be implemented as easily as loading new software. The new algorithm could be designed by the
switching company and sent electronically to the switch system, which upon reboot could be loaded into the
programmable logic device.

For those companies wishing for even higher throughput performance, the following scenario is possible.
The switching system designer may have two or three different scheduling algorithms which are applicable
to the system, and can have these designs stored in ROM in the system. By monitoring the performance of
the switch (this may be done by watching the sizes of the FIFO queues) and seeing if traffic is getting
through, the system could reconfigure the programmable logic device with a different algorithm to determine
if this improves the performance. In this case the system is dynamically adapting its hardware dependent
upon the traffic requirements in the system.

Shown in Figure 3 is the architecture of the buffer and scheduler system. Because all of the components of
the system are implemented in an SRAM process, the system may be modified at any time as design changes
are made. The advent of embedded programmable logic devices which efficiently implement complex
memory and logic functions are well suited for this type of application. In particular, the control memory,
which is used to emulate the FIFO buffers in the off-chip cell memory, can be integrated into the FLEX
10K20, which has the capacity for up to 12K bits of dual-port SRAM.

10

Figure 3. ATM Buffer and Scheduling Block Diagram

CELL_IN

CELL_ADDRESS

CELL_/CS

CELL_/OE

CELL_OUT

CELL_R/W

From Switch Fabric

ADDRESS

DATA

/CS

/OE

R/W

C
_A

D
D

R
ES

S

VC
_G

R
O

U
P

PK
T_

ST
R

O
B

E

M
O

D
E

R
ES

ET

C
LK

Q
U

EU
E_

FU
LL

C
_D

A
TA

C
_/

C
S

C
_R

/W

C
_/

O
E

To Output Port

Control
Memory
Dual-Port
SRAM

Cell Memory

Dual Port
SRAM

Logic Array

Switch Controller

Embedded Array

FLEX EPF10K20

Scheduler Controller

By implementing the buffering and scheduling of ATM packets in SRAM-based devices, the designer has
several degrees of freedom in which to modify his or her design. This is just a simple example of how
reconfigurable programmable logic can be used to create upgradeable, adaptable communications hardware.

In this way hardware investments are preserved because the system can be upgraded with newer, more
efficient designs as they become available. Additionally, clever engineers can actually design their systems
to adapt to different network loading factors dynamically, if needed. It is this type of flexibility that makes
the use of programmable logic ideal for networking systems. The combined innovations in transmission
protocols and adaptive hardware designs should provide the necessary bandwidth and performance increases
needed to realize the vision of a global information infrastructure.

Biography
Robert Beachler is Altera’s Director of Development Tool Marketing. In the 1980s, he spent four years at
Altera in applications and product planning, directing the development of programmable logic architectures
and software tools. He holds a BSEE from Ohio State University.

11

II. Managing Power in High Speed Programmable Logic

Craig Lytle, Director of Product Planning and Applications

Altera Corporation

Abstract

This paper describes techniques to manage the power consumption of high-speed programmable logic
devices (PLDs). Power consumption has become an increasingly important issue to system designers as the
speed (and thus power consumption) of programmable logic devices has increased. To address power
consumption concerns, design engineers need to accurately predict the power conumption of a design before
the design is implemented on the board. When power consumption is too high, there are many design
approaches and device features that can reduce the ultimate power consumption of the design.

1. Introduction

Since power is a direct function of operating frequency, power consumption has become a greater issue as
system performance has increased. Initially the concern of only the few designers working on portable
equipment, power consumption is now important to a growing number of design engineers working on
everything from PC add-on cards to telecom equipment.

In logic ICs, power consumption is a direct function of factors such as gate count, operating frequency, and
pin count. As these fundamental metrics of the logic semiconductor industry continue to grow, power
consumption will grow as well.

Fortunately for power-conscious designers, several PLDs offer options to reduce power consumption.
These features, along with an eventual migration to 3.3-volt devices will keep power consumption issues
manageable.

2. The Components of Power Consumption

The total power consumed by a PLD is made up of three major components: standby, internal, and external.
An equation for total power (PTOTAL), shown below, reflects these three contributions:

PTOTAL = PSTANDBY + PINTERNAL+ PEXTERNAL

Where:

PSTANDBY is the standby power consumed by the powered device when no inputs are toggling.

PINTERNAL is the power associated with the active internal circuitry and is a function of the clock frequency.

PEXTERNAL is the power associated with driving the output signals and is a function of the number of outputs,
the output load, and the output toggle frequency.

Figure 1 shows the power consumption of a 2,500-gate PLD broken down into PSTANDBY, PINTERNAL, and
PEXTERNAL. As indicated in the figure, power consumption is strong function of frequency, and the internal
and external power consumption are large contributors at the frequencies typically found in today’s systems.
The standby power is a significant factor only at low frequencies.

12

Contribution to Total Power
2,500 Gate EPM7128 driving 50 Outputs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 25 50 75 100 125

Frequency in MHz

External Power
Internal Power
Standby Power

 Pow
er (W

atts)

Figure 1. Contributing factors to Power Consumption.

This graph shows the three contributing factors to the total power consumption. The total power is
dominated by the frequency dependent internal and external power.

3. Estimating Power Consumption

The total power consumption of a device can be estimated from the power consumption contribution of each
of the three factors.

3.1 Standby Power

The standby power consumption of a device depends primarily on the type of logic element used.
Programmable logic that use look-up tables (LUTs) or multiplexors as the basic logic element tend to have a
low standby power, typically less than 500 uW. This low standby power is primarily due to the leakage
current present in all CMOS logic devices. Examples of products in this class include Altera FLEX 8000
devices and FLEX 10K devices, Xilinx FPGAs, and Actel FPGAs.

On the other hand, devices that use product terms as the basic logic cell typically have a standby power
between 50 and 500 mW. In these devices the active pull-down transistors on the product terms are the
primary source of standby power. This passive pull-up, active pull-down structure means that product
terms are consuming power even in a static state. There are a few exceptions to this rule (as indicated in
the Managing Power In Programmable Logic section).

13

3.2 Internal Power

The internal power consumption of programmable logic devices is due to the switching of signals within the
device. Each time a signal is raised and lowered, current flows into and out of the device, thereby increasing
the power consumption.

To help engineers estimate the internal power consumption of their designs, most PLD vendors publish
equations or graphs that estimate the internal current consumption of a device as a function of the operating
frequency and the resource utilization of the device.

For example, the following equation is used to estimate the internal current consumption of Altera’s FLEX
8000 devices:

 IINTERNAL = KFNp.

In this equation, K is a constant equal to 75 uA/MHz/LE, meaning that each logic element (LE) consumes 75
uA for each full cycle transition. F is the master system frequency, N is the number of LEs, and p is the
percentage of LEs that toggle on each clock edge. A conservative estimate for p is 12.5% (0.125).

Using this equation reveals that a 2,500-gate design (200 logic elements) running at 50 MHz will consume
approximately 93 mA, or 468 mW, due to internal circuitry.

3.3 External Power

The external power consumed is dependent on only two main factors: the output load and the output toggle
frequency. Because both of these factors are independent of the device type, the external power
consumption is dependent entirely on the design, not the device.

A good approach to estimating external power is to use the following equation:

 PEXTERNAL = 1/2 ∑ Cn Fn Vn

2.

In this equation Cn is the capacitive load of output pin n, Fn is the toggle frequency of pin n, and Vn

2 is the
voltage swing of pin n. Assuming that C, F, and V is the same for each pin, the equation simplifies to:

 PEXTERNAL = 1/2 ACpF V2,

where A is the number of outputs, C is the average load, F is the system frequency, and V is the average
voltage swing. The factor p is the estimated number of clock cycles that an output pin toggles. A
conservative estimate for p is 20% (0.2).

Currently, most PLDs drive TTL output voltages with an NMOS pull-up transistor. Using an NMOS
instead of PMOS transistor makes the voltage swing approximately 3.8 volts, rather than the full 5.0-volt rail.
Devices with CMOS output drive options or internal pull-up resistors have a higher output voltage and
significantly higher power consumption.

Output switching contributes significantly to the power consumption of an application, regardless of the
device chosen. For example, a 50-MHz application with 50 output pins driving 35-pF loads would
consume approximately 126 mW of power, as shown in the following equation:

 PEXTERNAL = 1/2 (50 pins)(35 pF/pin) (20%)(50 MHz)(3.8 V)2 = 126 mW.

14

4. Managing Power in Programmable Logic

There are several approaches to managing power consumption in programmable logic. The easiest
approach is to take advantage of the power consumption features offered by many programmable logic
devices. Switching to 3.3-volt PLDs is another option. Programmable logic devices that run at 3.3 volts
are now available from a few vendors, with more to come in the near future. In the mean time, 3.3V/5.0V
hybrid devices are the perfect choice for designers who need to use components that require both power
supply standards.

Many of the programmable logic devices available today have features that can be used to manage power
consumption, including automatic power-down, programmable speed/power control, and pin-controlled
power down. Different applications benefit from different approaches to power consumption management.
The following descriptions of the different approaches and their impact on power consumption can help you
choose the features that are appropriate for your application.

4.1 Automatic Power-Down

To reduce standby power consumption, some EPROM-based PLDs offer an automatic power-down feature.
These devices contain internal power-down circuitry that continually monitors the inputs and internal signals
of a device, and powers down the internal EPROM array after approximately 100 ns of inactivity. When an
input changes, the EPROM array is then powered up and the device behaves as normal. For example,
Altera Classic devices offer a power-down feature (called the "zero-power mode") enabled and disabled.
The zero-power mode eliminates the power consumed by the product-terms, reducing the standby power
consumption to that consumed by CMOS leakage current.

4.2 Programmable Speed/Power Control

Some programmable devices allow the designer to trade off between speed and power. Since many
applications have only a few truly speed-critical paths, a designer can choose to run parts of the design at
high speed while the rest of the design runs at low power. For designers that require high speed in at least
some portion of their design, this feature may provide the most effective means of managing power
consumption.

For example, with MAX 7000 and MAX 9000 devices, each macrocell can be programmed by the designer
to operate in the turbo mode or low-power mode. The turbo mode offers higher performance with normal
power consumption, while the low-power mode offers reduced power consumption with lower performance.
The low-power mode reduces the macrocell's power consumption by 50% while increasing the delay by 7-15
ns, depending on the speed grade.

Figure 2 shows the power consumed by an Altera MAX 7000 device under two conditions: one in which
the turbo mode is turned on for all macrocells in the device, and one in which the low-power mode options
are turned on for all the macrocells in the device. The actual power consumed by a design would lie
between the two lines depending on how many macrocells are set in each mode.

15

Effect of Speed/Power Control
Comparison of EPM7128 in Turbo and Low-Power Mode

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140

System Frequency (MHz)

Internal Power
(Watts)

Turbo-Mode
Low-Power Mode

Figure 2. Programmable Speed/Power Control

The EPM7128E offers speed/power control on a macrocell-by-macrocell basis. This graph shows the
power consumption with all the macrocells in either the turbo or low-power mode.

4.3 Pin-Controlled Power Down

Some programmable logic devices offer a power-down mode that is controlled by an external pin. This
method of power management allows the designer to power-down portions of a board that are not in use. A
typical example is a laptop motherboard that powers down the disk drive and associated logic when the drive
is not in use.

When the device is powered down, the outputs still drive valid signals and the internal values of all registers
remain valid. When the power-down pin is deactivated, the device responds to new inputs within a set
amount of time (700 ns, in the case of the EPM7032V).

4.4 3.3-volt Devices

One of the most effective approaches to reducing power consumption is to move to a 3.3-volt device.
Reducing the voltage has a square law effect on the power consumption. As shown in the internal power
consumption equation, a reduction in voltage from 5.0 to 3.3 volts can reduce the internal power
consumption by up to 57%.

Figure 3 shows the internal power consumption of two Altera FLEX 8000 devices. One device is the 5.0-
volt EPF8282A and the other device is the 3.3-volt version known as the EPF8282V. The same application
is running in both devices at the same speed, using 90% of device resources. In the case of the 3.3-volt
device, the power reduction is close to 50%.

16

5.0 vs. 3.3 Volt Power Supply
2,500 Gate EPF8282 driving 50 outputs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140

System Frequency (MHz)

To
al
Po
we
r
(W
att
s)

5.0 Volt Supply
3.3 Volt Supply

Figure 3. 3.3 Volt Power Reduction

Switching to 3.3 volts is the most effective means of reducing power consumption. This graph compares
the power consumed by the 5.0-volt EPF8282A and the 3.3-volt EPF8282V.

4.5 3.3-Volt / 5.0-Volt Hybrid Devices

To help accelerate the inevitable transition from 5.0-volt to 3.3-volt devices, some programmable logic
vendors offer devices that can be programmed to drive either 3.3-volt or 5.0-volt outputs and can accept
either 5.0-volt or 3.3-volt inputs. By allowing engineers to bridge the transition between 5.0-volt and 3.3-
volt technology, these devices enable overall power reduction by allowing lower power-consuming 3.3-volt
devices to be used with 5.0-volt devices. Without these hybrid “bridge” devices, designers would have to
wait until every device used in the design was available in a 3.3-volt version.

The greatest reduction in power consumption results from a transition to 3.3-volts, and using these hybrid
devices eases and facilitates the transition.

17

Conclusion

Power consumption is a critical issue in many designs today. With gate counts, operating frequency, and
pin counts increasing, power consumption must also increase if it is not offest by other factors. The most
promising relief from increasing power consumption is the migration from 5.0-volt to 3.3-volt power
supplies. This migration alone can cut power consumption by as much as 60%.

In addition, several programmable logic devices have many unique approaches to reducing power
consumption within the device. From programmable speed/power control to automatic power-down, each
approach offers a unique set of benefits and tradeoffs. Designers must understand the options offered by
the each family of devices in order to make the right choice for their applications.

18

III. PLD Based FFTs

Doug Ridge1, Yi Hu1, T J Ding2, Dave Greenfield3

Abstract
Three fast Fourier transform (FFT) megafunction architectures are discussed which enable a balance to be
achieved between required performance and implementation size when implemented on Altera FLEX 10K
PLDs.

Performance far in excess of what can be achieved using DSP processors is demonstrated with
megafunctions capable of continuous processing of data at sample rates in excess of 20MHz.

The megafunctions represent a breakthrough for DSP designers, by simplifying the design process, reducing
component count and board complexity, and enabling faster time-to-market and reduced product costs.

1. Introduction

The FFT is of fundamental importance in many DSP systems and its widespread application requirements
have typically meant that DSP processor based solutions were the most practical. Typical drawbacks of
processor based solutions have tended to be in their lack of ability to handle the increasing performance and
functionality requirements of modern day systems. However, the performance and device density of Altera
PLDs has opened up a window for FFT solutions where high performance and function customization is
required to match the needs of the end application.

This paper discusses three FFT megafunction architectures which have been developed and their utilization
to produce Altera FLEX 10K based FFT solutions for real-world applications. Section 2 addresses the main
issues surrounding the development of FFT megafunctions for implementation on Altera FLEX 10K PLDs.
Section 3 then takes a look at the FLEX 10K family and discusses its architecture in terms of its suitability to
the implementation of fundamental DSP functions such as FFTs.

In section 4 a brief comparison is made of the performance of the FFT megafunctions against performance
using off-the-shelf DSP processors and microprocessors. A discussion of the advantages and flexibility of the
FFT megafunctions is given in section 5. Finally conclusions are drawn in section 6 as to the impact that
these FFT megafunctions have on system development, taking into account their optimized nature and the
fact that they can be customized to the exact requirements of the end application.

2. FFT Megafunctions

When implementing DSP functions such as FFTs using standard DSP processors, a certain amount of the

1 Integrated Silicon Systems Ltd., 29 Chlorine Gardens, BELFAST, Northern Ireland, BT9 5DL. Tel: +44
1232 664 664. Fax: +44 1232 669 664. Email: doug@iss-dsp.com.

2 The Queen’s University of Belfast, Department of Electrical and Electronic Engineering, Ashby Building,
Stranmillis Road, BELFAST, Northern Ireland, BT9 5AH. Email: tj.ding@ee.qub.ac.uk.

3 Altera Corporation, 3 W. Plumeria Drive, SAN JOSE, CA 95134-2103, USA. Tel: (408) 894 7152. Fax:
(408) 428 9220. Email: davidg@altera.com.

19

processor’s hardware always remains redundant during the transform operation. This is especially true in
more simple functions such as FIR filters and arithmetical operations (divide, square root, etc.). Added to this
are the problems associated with interfacing to standard components. As a result performing all your DSP
needs on DSP processors can give a large overhead on component count, board size and design time and lead
to higher product costs and the erosion of competitive advantages in the marketplace.

When the problems associated with the inflexibility of DSP processor solutions are considered, in terms of
data wordlengths, data word formats, interfacing and performance/area trade-offs, the requirements for a
much more flexible approach to the implementation of DSP functions becomes apparent.

The generic nature of off-the-shelf components in terms of their interfaces and internal architecture make
them ‘generally’ applicable to a wide range of target applications. This means that although they can be
designed into many applications, they are by no means the ideal solution for them. In most cases dramatic
savings in design time and component count is made if a customized solution can be obtained; this also
enables designers to build in their own proprietary functionality which will represent part of their
competitive advantage in the marketplace.

The customization of an FFT solution encompasses the interfacing to the FFT megafunction from other
functions and components and also an optimization of the architecture for the Altera FLEX 10K PLDs and a
given application.

To achieve the this customization and optimization, ISS has developed two FFT architectures to obtain the
best balance between required performance and silicon area for high data rate applications. Added to this is
Altera’s own FFT MegaCore megafunction.

The three FFT architectures combine to create a range of FFT megafunctions ideal for the vast majority of
DSP applications. Indeed where the performance of a DSP processor is adequate for a particular application,
it can still be advantageous to use an FFT megafunction. Since the desired FFT occupies only part of a
PLD, additional silicon is therefore available on the device for other functionality. Moreover, the ability of
the designer to specify the interfacing to the megafunction can give additional savings in design size and
time. These features have the major benefit of reducing chip count and board complexity.

3. Altera FLEX 10K PLDs

When examining the FFT megafunctions it is important to consider the architecture of the Altera FLEX 10K
PLDs which make their implementation possible and to study the directions and trends in this architecture.
From this analysis we can draw conclusions on future FFT megafunction implementation performance and
size.

Significant shifts in PLD technology have changed the design process for DSP designers. This involves
improvements in both density and performance, which are critical to implementing real-time system-on-a-
chip interfaces. Now, 130,000-gate PLDs are shipping in production volumes and implementing designs
with system speeds in excess of 75 MHz. PLD device density will hit 250,000 gates by the end of 1997.
The architectural features of these devices also make them ideal for DSP applications.
Large embedded blocks of RAM are critical elements of DSP functions like FFTs; trade-off of RAM for
logic in traditional FPGAs fails to provide the resources needed for these functions. Embedded array PLD
architectures – in which separate blocks are created for large blocks of RAM – meet this challenge. In fact
for 256- and 512-point FFTs, all memory processing is done on board the EPF10K100 device (for larger
FFTs, memory requirements can be handled by either a combination of enmbedded RAM and external RAM
or solely by external RAM). Table 1 indicates the logic and RAM capabilities of selected FLEX 10K
devices.

20

Device Logic Cells (8-12 gates/LCell) RAM (configured in blocks of 2056 bits)
EPF10K50 2,880 LCells 20,560 bits
EPF10K100 4992 LCells 24,576 bits
EPF10K130 6,656 LCells 32,896 bits

Table 1. FLEX 10K Logic and RAM.

4. Performance Data

All three FFT architectures provide performance that exceeds the speeds available with DSP processors or
standard processors. Table 2 shows the performance of the slowest ISS FFT architecture relative to other
typical FFT solutions.

Platform Relative transform time

Altera FLEX 10K 1
SHARC DSP 3.6
150MHz Pentium 55

Table 3. Performance comparison.

We will refer to the three FFT megafunction architectures as A, B and C for sake of clarity, where A is the
Altera MegaCore, and B and C are the ISS architectures. Architecture A, the Altera FFT MegaCore, is a
fully parameterizable function that can implement FFTs of multiple data and twiddle widths as well as
various transform lengths. Architecture B, the lower performance of the two ISS FFT megafunction
architectures, lends itself to implementation on a single Altera FLEX 10K PLD and can in many cases utilize
the EABs to implement all the memory requirements of the FFT.

Architecture C was designed for higher performance than B and generally requires more silicon area. As a
result, architecture C lends itself to be partitioned over multiple devices if required. Like the other two
architectures it can also be implemented on a single device if desired.

Table 3 shows some representative transform times for the three megafunctions. For more information on
transform times of the functions in various applications, contact ISS or Altera directly.

Architecture Transform Length Transform Time

A 1024 points 250 s
B 128 points 11.8 s
C 16 points 1.6 s

Table 3. Example transform times.

All three architectures can be configured to the requirements of each application in terms of data word
lengths, data word formats, internal accuracy, transform length and performance. They can also be
configured to use internal or external memory.

Table 3 gives a comparison of the architecture B with both a DSP processor and standard microprocessor.

From this table it is quite simple to see the performance advantages of the FFT megafunctions over DSP
processors and microprocessors. This is obvious without considering the different architectures available and
the higher performance achievable.

21

5. Discussion

The three FFT megafunction architectures are shown to cover a wide range of performance requirements
when implemented on Altera FLEX 10K PLDs. The ability to make trade-offs between performance and area
for such fundamental DSP functions has never before been available to DSP designers without opting for
ASIC solutions.

The advantages of these megafunctions to DSP system designers are added to by the manner in which they
are constructed and in which they are delivered. Besides the ability of ISS and Altera to provide designers
with FFT megafunctions optimized for their particular requirements, they are also configured to minimize
the interfacing requirements and to blend in as seamlessly as possible into the particular design. The designer
can therefore state his exact requirements and the megafunction can then be delivered as a ‘black box’
solution. The black box solution enables the designer to drop the megafunction into his system without the
need to understand its internal operation. With external interfaces minimized, the design process is simplified
and shortened.

Delivery of the megafunctions also includes a substantial set of supporting material. With constraints files,
test bench, graphical symbol file, documentation and technical support provided with each megafunction, the
process of designing and testing is further simplified and shortened. The simplification and shortening of the
design cycle produces a reduction in development cost and time-to-market, enabling companies to get their
products to market ahead of the competition and at a lower cost.

The simplification of the design process through the use of megafunctions, as explained earlier, has the
added advantage of reducing interface problems and therefore reducing the amount of interface logic
required in a design. Added to the fact that many functions can be incorporated into a single PLD in the
system, the component count reduces further, reducing the complexity of the circuit board and enabling
further savings in product costs. All of these benefits add to the capability of megafunction users to get to
market ahead of their competitors and to price their products competitively.

For small companies whose main competitive edge is to provide something that its competitors do not, the
use of customized megafunctions provides that edge. By being able to specify the exact functionality of each
megafunction, companies can add functionality and performance advantages to their products without an
increase in component count. These functionality and performance advantages are further emphasized when
designers consider the use of off-the-shelf components. When using the same off-the-shelf components
which are available to their competitor, it becomes increasingly difficult to establish any competitive
advantage with each new design.

22

Conclusions

Following on from the discussion above, we can draw on the main points discussed to arrive at a list of the
main advantages which the FFT megafunctions produce for DSP designers.

• very high performance
• performance/area optimization
• reduced development costs
• competitive advantage
• lower product pricing
• faster time-to-market

Other considerations can be made are in terms of the Altera FLEX 10K family itself. With product pricing
reducing at a rapid rate and with device gate count increasing, it is becoming more and more attractive to
port DSP functionality to these devices to reduce product costs.

23

IV. The Library of Parameterized Modules (LPM)

Craig Lytle
Senior Director of Product Planning and Applications

Martin S. Won

Member of Technical Staff

Altera Corporation, 2610 Orchard Parkway
San Jose, CA, USA

Introduction

Digital logic designers face a difficult task. They must create designs consisting of tens-of-thousands of
gates while meeting ever increasing pressure to shorten time-to-market. In addition, designers need to
maintain technology independence, without sacrificing silicon efficiency.

Meeting these requirements with today’s EDA technology is not easy. Schematic-based design entry,
though providing superior efficiency, deals with low level functions that are technology dependent. High-
level Design Languages (HDLs) offer technology independence, but not without a significant loss of silicon
efficiency and performance.

Bridging this gap between technology-independence and efficiency was difficult because there has never
been a standard set of functions that were supported by all EDA and IC vendors. This has now changed
with the introduction of EDA tools that support the Library of Parameterized Modules (LPM).

1. The History of LPM

The LPM standard was proposed in 1990 as a means to enable efficient mapping of digital designs into
divergent technologies such as PLDs, Gate Arrays, and Standard Cells. Preliminary versions of the standard
appeared in 1991 and again in 1992. The standard was accepted as an Electronic Industries Association
(EIA) Interim standard in April 1993 as an adjunct standard to the Electronic Design Interface Format
(EDIF).

EDIF is the preferred method for transferring designs between the tools of different EDA vendors and from
the EDA tools to the Integrated Circuit (IC) vendors. EDIF describes the syntax that represents a logical
netlist, and LPM adds a set of functions that describe the logical operation of the netlist. Before LPM, each
EDIF netlist would typically contain technology-specific logic functions, making technology-independent
design impossible.

Although LPM is an adjunct standard to EDIF, it is compatible with any text or graphic design entry tool.
In particular, LPM is a welcome addition to Verilog HDL or VHDL designs.

LPM is supported by every major EDA tool vendor including Cadence, Mentor Graphics, Viewlogic, and
Intergraph. Altera has supported the standard since 1993, and many other PLD companies will support
LPM by the end of 1995.

24

2. The Objective of LPM

The primary objective of LPM is to enable technology-independent design, without sacrificing efficiency.
By using LPM, the designer is freed from deciding the target technology until late in the design flow. All
design entry and simulation tools remain technology-independent and rely on the synthesis or fitting tools to
efficiently map the design to various technologies. Efficiency is guaranteed because the technology
mapping is handled by the technology vendors either during logic synthesis or fitting.

To be effective, LPM had to meet the following key criteria:

2.1 Allow Technology-Independent Design Entry

The primary goal of LPM was to enable technology-independent design. Designers can work with the LPM
modules during design entry and verification without specifying the target technology.

2.2 Allow Efficient Design Mapping

Technology-independent design typically means inefficient design. LPM allows designers to use
technology-independent design without sacrificing efficiency. The technology mapping of LPM modules is
specified by the technology-vendor, so that the most optimum solutions are guaranteed.

2.3 Allow Tool-Independent Design Entry

Designers require the ability to migrate a design from one EDA vendor’s tool to another. Many designers,
for example, use one vendor for logic synthesis and another vendor for logic simulation. LPM enables
designers to migrate designs between EDA vendors while maintaining a high-level logic description of the
functions.

2.4 Allow specification of a complete design

The LPM set of modules can completely specify the digital logic for any design. Any function that is not
included in the initial set of modules, can be created out of the modules.

3. The LPM Functions

LPM presently contains 25 different modules, as shown in Figure 1. The small size of the LPM library
belies its power. Each of the modules contain parameters that allow the module to expand in many
dimensions. For example, the LPM_COUNT module allows the user to specify the width of the counter to
be any number from 1-bit to infinity.

Figure 1. Current list of LPM Modules.

 CONST DECODE COUNTER RAM_DQ INPAD
 INV MUX LATCH RAM_IO OUTPAD
 AND CLSHIFT DFF ROM BIPAD
 OR ADD_SUB TFF TTABLE
 XOR MULTIPLIER FSM
 BUSTRI ABS

In addition to width, the user can specify the features and functionality of the counter. For example,
parameters indicate whether the counter counts up or down, or loads synchronously or asynchronously.

25

The result is that the single module LPM_COUNT can replace over 30 7400-style counters. The complete
list of options for the LPM_COUNT module is shown in Figure 2.

By having several parameterized aspects, the 25 modules of LPM are able to duplicate the functionality of
other design libraries that contain 100’s of components. The reduced size of the LPM in relation to these
other libraries (such as a 74-series TTL library) greatly simplifies the design entry and debugging task.

Figure 2. Parameters and Options for the LPM_COUNT Module.

 Counter width
 Direction (up, down, or dynamic)
 Enable style (clock enable or count enable)
 Load style (synchronous or asynchronous)
 Load data (variable or constant)
 Set or clear (synchronous or asynchronous)

4. Design Flow with LPM

LPM fits into any standard design flow used for designing PLDs, Gate Arrays, or Standard Cells. The
library works equally well with HDLs (Verilog HDL or VHDL), schematics, or block diagrams, and can be
used during functional or pre-route simulation.

Figure 3 shows how LPM fits into a standard design flow while providing technology-independent design
entry. Each EDA supplier will provide the symbol and functional library. For the technology mapping
phase, each technology vendor will provide a file that contains optimized implementations of each LPM
function. These optimized functions can be used to by any EDA vendor to map to any technology.

Figure 3 shows the typical design flow using LPM.

S chem atic
E n try

Function al
S im ula tio n

Lo gic
S ynthe s is /

Techno lo gy
M a pp ing

S ym bo l &
F unc tion a l
L ib ra ry

P lacem e nt
&

R ou ting

Techno lo gy
L ib ra ry

W ork ing
D ev ice

V H D L
E ntry

Function al
S im ula tio n

Lo gic
S ynthe s is /

Techno lo gy
M a pp ing

P lacem e nt
&

R ou ting

W ork ing
D ev ice

S ym bo l &
F unc tion a l
L ib ra ry

Techno lo gy
L ib ra ry

E D A T ool V endor A

E D A T ool V endor B

Techno logy V end or C

Techno logy V end or D

LP M

LP M

LP M

LP M

N etlis t
w / LP M

LP M

26

When designing with schematics or block diagrams, the LPM symbols replace the use of tool- or technology-
specific symbols. The LPM symbols have the advantage of being scalable and easier to understand. Once
the schematic is entered, functional simulation can be completed within any standard simulator. The output
netlist from the schematic contains LPM symbols and can be passed on to technology mapping and place and
route. From this point on, the design becomes technology specific.

When designing with HDLs, the designer may decide to instantiate LPM functions within the source. It is
easier, for example, to instantiate an LPM-style counter than it is to specify the functionality with behavioral
code. These instantiated functions are passed
directly into the output netlist while the rest of the design is mapped to the target technology.

In addition to the instantiated LPM functions, sophisticated logic synthesis programs can infer LPM
functions from the behavioral description. For example, a synthesis tool may choose to map all “+” operators
within the HDL file to an LPM_ADD_SUB function with the appropriate parameters to create addition. By
inferring an LPM adder from the behavioral description, the EDA tool frees designer to use behavioral code
without sacrificing silicon efficiency.

Whether schematics or HDLs are used as design entry, eventually a netlist containing the LPM functions is
passed on to the technology-specific fitter for final placement and routing. The fitter will output the
appropriate object files to implement the design, along with netlists containing the post-route timing of the
design.

5. Efficient Technology Mapping

The primary advantage of LPM is that it allows technology-independent design without sacrificing efficiency.
The key to the efficiency of LPM is that it allows the technology mapping to work from a higher level of
abstraction. This higher level of abstraction allows the technology vendors to optimize the function’s fit by
making use of special features within the IC’s architecture.

A good example of this advantage can be found by looking at the LPM_COUNT module. The typical code
fragment used to specify a loadable, enabable counter within VHDL is shown in Figure 4. This code will
be synthesized to gates by most logic synthesis tools. Once the counter is synthesized to gates, it is very
difficult to recognize as a counter. The result is that the carry-chains found in many high-density PLDs will
not be used to implement the counter. In many cases this can double or triple the number of logic elements
required to implement a simple counter.

Figure 4. Sample VHDL code fragment that implements a 16-bit loadable, enabled counter. This code
results in an implementation that requires 45 basic building blocks (logic elements) in a target PLD
technology and runs at 28 MHz.

 PROCESS (clk)
 BEGIN
 IF clk'event and clk = '1' THEN
 IF load = '1' THEN
 count <= data;
 ELSIF enable = '1' THEN
 count <= count + 1;
 END IF;
 END IF;
 q <= count;
 END PROCESS example;

27

The LPM_COUNT module, on the other hand, allows the technology mapping tool to recognize that the
function can use the carry chain resulting in improved performance and efficiency. Figure 5 shows how the
LPM_COUNT function can be instantiated within the same VHDL source. The LPM version of the
counter offers nearly a 3-to-1 advantage in silicon efficiency and 4-to-1 advantage in performance.

Figure 5. Instantiating an LPM counter is as simple as listing a portmap. The functionality of the counter is
described in the EDA tool library. After technology mapping, the resulting implementation requires just 16
basic building blocks (logic elements) in the same PLD technology and runs at 150 MHz.

 BEGIN
 u1: lpm_counter
 port map(data => data_in,
 q => results,
 load => load,
 enable => enable,
 clk => clk);
 END example;

6. The Future of LPM

The current set of LPM functions represent the 25 most popular digital functions and can be used to build up
any digital function. Future versions of the standard will raise complexity of the functions to enable higher-
level design entry. Possible future functions include FIFOs and Dual-Port RAMs. In addition, the library
can be extended to application-specific areas such as Digital Signal Processing (DSP). Examples of DSP
functions include Finite Impulse Response (FIR) Filters, Fast Fourier Transforms (FFTs), or Discrete Cosine
Transforms (DCTs).

The LPM subcommittee will continue to refine the current LPM library and expand the library into new
areas throughout the rest of 1995 and beyond. The limits of the library have not yet been seen and the
belief is that the library will continue to evolve for at least a decade.

28

Conclusion

The Library of Parameterized Modules offers designers a means to achieve technology-independent design
entry without sacrificing efficiency. The library can be used with schematic, Verilog, or VHDL design
entry and is supported by most major EDA vendors.

As the LPM expands in scope and support, it will become the standard method of design entry and synthesis
over the next five to 20 years.

Figure 1. Current list of LPM Modules.

 CONST DECODE COUNTER RAM_DQ INPAD
 INV MUX LATCH RAM_IO OUTPAD
 AND CLSHIFT DFF ROM BIPAD
 OR ADD_SUB TFF TTABLE
 XOR MULTIPLIER FSM
 BUSTRI ABS

Figure 2. Parameters and Options for the LPM_COUNT Module.

 Counter width
 Direction (up, down, or dynamic)
 Enable style (clock enable or count enable)
 Load style (synchronous or asynchronous)
 Load data (variable or constant)
 Set or clear (synchronous or asynchronous)

Figure 3 shows the typical design flow using LPM.

Schem atic
E ntry

Functional
S im ulation

Logic
Synthesis/

Techno logy
M apping

Sym bol &
Functional
Library

P lacem ent
&

Routing

Technology
Library

W orking
Device

V H DL
E ntry

Functional
S im ulation

Logic
Synthesis/

Techno logy
M apping

P lacem ent
&

Routing

W orking
Device

Sym bol &
Functional
Library

Technology
Library

EDA Tool Vendor A

EDA Tool Vendor B

Technology Vendor C

Technology Vendor D

LP M

LP M

LPM

LPM

Netlist
w / LPM

LPM

29

Figure 4. Sample VHDL code fragment that implements a 16-bit loadable, enabled counter. This code
results in an implementation that requires 45 basic building blocks (logic elements) in a target PLD
technology and runs at 28 MHz.

 PROCESS (clk)
 BEGIN
 IF clk'event and clk = '1' THEN
 IF load = '1' THEN
 count <= data;
 ELSIF enable = '1' THEN
 count <= count + 1;
 END IF;
 END IF;
 q <= count;
 END PROCESS example;

Figure 5. Instantiating an LPM counter is as simple as listing a portmap. The functionality of the counter is
described in the EDA tool library. After technology mapping, the resulting implementation requires just 16
basic building blocks (logic elements) in the same PLD technology and runs at 150 MHz.

 BEGIN
 u1: lpm_counter
 port map(data => data_in,
 q => results,
 load => load,
 enable => enable,
 clk => clk);
 END example;

30

V. A Programmable Logic Design Approach to Implementing PCI

Interfaces

Martin Won
Senior Applications Engineer

Altera Corporation

This paper will discuss a programmable logic approach to implementing Peripheral Component Interconnect
(PCI) bus interfaces. PCI is rapidly gaining popularity for its high performance and wide bandwidth, and in
order to take full advantage of its capabilities, system designers must consider a number of possible
implementations. The portion of the PCI bus scheme that this paper will address is the the interface
between the PCI bus itself and any back-end function that needs to use the bus, either to send or receive data.

A programmable logic implementation of a PCI interface offers several options that non-programmble logic
implementations (i.e. chip sets) do not. The most attractive aspect of using programmable logic for PCI bus
interfacing is the flexibility of the implementation.

Programmable logic provides the flexibility to customize the interface to the back-end function. There is
also the capability to easily change or alter the interface design to update or add features to the overall
product. Also, programmable logic features the option to incorporate portions of the back-end function into
the programmable logic device itself (if resources are available; see the Hardware Implementation section of
this paper), thus conserving board real estate. Finally, another reason for choosing programmable logic
over a less-flexible solution is that a dedicated solution might not support all the possible bus cycles
specified in the PCI specification, whereas programmable logic is open to support all the existing bus cycles,
plus any that may be defined in the future.

1. Customizable Functionality

There are a number of areas in a PCI interface that need to be tailored to suit the needs of the function that is
being interfaced to a PCI bus. This tailoring ranges in complexity from choosing not to implement certain
functions (i.e. parity check and/or parity error) to fine-tuning the logic to meet critical needs (i.e. limiting the
response of the control state machine to certain bus cycles to optimize the timing). These and other types of
changes are easily made in a programmable logic design approach with straightforward modifications of the
design description. Specific modifications will be discussed in the section of this paper titled
Modifying/Customizing the Macrofunctions.

2. Description of PCI Macrofunctions

A set of PCI interface designs has been created for use with Altera’s programmable logic devices. These
designs (or macrofunctions in Altera’s terminology) are meant to serve as the foundations for a PCI interface
design, with the designer changing aspects of the macrofunction and adding/removing components to suit the
individual needs of the product. At present, there are three macrofunctions: a master interface, a target
interface, and a parity generator. A macrofunction for a combined master/target interface is in development.

Several Altera devices are specified by the PCI Special Interest Group (SIG) as being PCI-compliant,
including many members of the MAX 7000 and FLEX 8000 families. A complete list of these devices is
available both from the PCI SIG and from the Altera Marketing department at (408) 894-7000. There is
also a complete checklist of items that are associated with PCI compliance; for more information on
specificities of Altera’s device compliance, consult Altera’s Application Brief 140: PCI Compliance of
Altera Devices.

31

The PCI macrofunctions have been described using Altera Hardware Description Language (AHDL). In
this form, they are ready to be incorporated into any design targeted for an Altera programmable logic device.
The development tool used to design for Altera devices is MAX+PLUS II, a complete development
environment including design entry, compilation, and simulation capabilities, as well as interfaces to most
popular CAE tools. The rest of this section describes MAX+PLUS II operation; readers who are familiar
with MAX+PLUS II but not AHDL may wish to skip ahead to the Brief Introduction to AHDL. Readers
who are familiar with MAX+PLUS II and AHDL will probably want to skip forward to
Modifying/Customizing the Macrofunctions.

Within the MAX+PLUS II design environment, macrofunctions can be used either as stand-alone design
descriptions or as part of larger design descriptions. Depending on the design requirements, the designer
can modify the design description of the appropriate PCI interface macrofunction, or instantiate the
macrofunction into a larger design description. Design descriptions can be composed of any combination
of graphics, text, and waveform design files. A completed design description is submitted to the
MAX+PLUS II Compiler, which produces programming and simulation files for the targeted programmable
logic device. Simulating the design using timing information from the overall system contributes to
guaranteeing the reliable operation of the device in the system. The MAX+PLUS II design flow (modified
to show use of a PCI macrofunction) is illustrated in Figure 1 below:

PCI interface
macrofunction file

MAX+PLUS II
Compiler

MAX+PLUS II
Design Editors

top-level design file

MAX+PLUS II
Simulator

simulation files

programming files

Programmer

Figure 1

3. Brief Introduction to AHDL

While this document cannot include a full treatment of AHDL, an understanding of some of the basic
concepts of AHDL will enable a designer to make most of the changes necessary to use and customize the
PCI macrofunctions. To this end, a few simple AHDL examples will be discussed in this section. Readers
who are familiar with AHDL can skip forward to the Understanding and Customizing the Macrofunctions
section. For a complete treatment of AHDL consult the MAX+PLUS II AHDL manual as well as
MAX+PLUS II On-Line Help.

AHDL is a text-based design language in which the behavior of the desired logical function is described.
For example, Figure 2 shows an AHDL fragment of the parity generator (a complete AHDL description of
this macrofunction is available as part of Altera’s PCI Design Kit or directly from Altera’s Applications
group). Note that the bit widths of the input buses (address or ad and command/byte enable or c_be) are
indicated by the range delimiter [X..Y] where X and Y determine the upper and lower bound of the bus width.
Note also that the parity signals par0 and par1 are generated via boolean equations, where the symbol $
corresponds to the logical XOR operation.

32

SUBDESIGN pci_par
(
 ad[31..0], c_be[3..0] : INPUT;
 parity : OUTPUT;
)

VARIABLE
 par[10..0] : NODE;

BEGIN

 -- Parity generation equations

 par0 = ad0 $ ad1 $ ad2 $ ad3;
 par1 = ad4 $ ad5 $ ad6 $ ad7;

The AHDL fragment in Figure 3 below illustrates the declaration of the Base Addess Registers (BAR):

SUBDESIGN target
(

-- PCI Interface Signals

 CLK : INPUT; -- PCI Clock
 AD[31..0] : BIDIR; -- Multiplexed address/data
 RST : INPUT; -- PCI Master Reset

 VARIABLE

 BAR[31..5] : DFF; -- Base Address Registers

BEGIN

 BAR[].clk = CLK;
 BAR[].clrn = RST;
 BAR[31..5].d = Write_BAR & AD[31..5] # !Write_BAR & BAR[31..5].q;

The AHDL fragment in figure 3 also illustrates the description of the logic required to write a value into the
Base Address Registers. The last line of AHDL in the fragment (shown below) defines that the 28-bit value
to be placed on the d inputs of the BAR is the value on the address lines (AD[31..5]) logically ANDed with
the binary signal Write_BAR (defined outside of this fragment) OR the value from the q outputs of the BAR
anded with the complement of Write_BAR.

 BAR[31..5].d = Write_BAR & AD[31..5] # !Write_BAR & BAR[31..5].q;

The last item of interest in both AHDL fragments is the use of the two sequential dashes to indicate a
comment. This notation can also be used to prevent lines of text in an AHDL design description from being
compiled into the hardware implementation of the design. For example, if a designer did not wish to
include a PCI master rest input signal (listed as RST in figure 4) in the design, he or she could add two
dashes to the beginning of that line as indicated in figure 4 below:

SUBDESIGN target
(

33

-- PCI Interface Signals

 CLK : INPUT; -- PCI Clock
 AD[31..0] : BIDIR; -- Multiplexed address/data
-- RST : INPUT; -- PCI Master Reset

The other means of commenting out a line of AHDL code is with the percent symbol (%). Unlike the
sequential dashes, use of a single percent sign indicates the beginning of a comment, while the second
percent sign indicates the end of the comment. For example, if a designer wished to comment out the last
two lines of the AHDL fragment in Figure 4 using percent signs, the resulting text would look like Figure 5:

SUBDESIGN target
(

-- PCI Interface Signals

 CLK : INPUT; -- PCI Clock
% AD[31..0] : BIDIR; -- Multiplexed address/data
 RST : INPUT; -- PCI Master Reset %

AHDL designs are saved as files with a .tdf (Text Design File) extension. MAX+PLUS II recognizes files
with the .tdf extension as AHDL design files to be compiled or incorporated into designs for Altera
programmable logic devices.

4. Modifying/Customizing the Macrofunctions

There are a number of ways a designer might customize the PCI macrofunctions to suit the needs of a
particular design. This section of the paper will describe a few of them. The whole range of possible
variations on a PCI interface design can not, of course, be encapsulated into any single document, but the
intention of covering a few examples here is to convey the effort involved in such changes. The
customizations that will be discussed are:

 (1) Adjusting the width of the address and data buses connecting the interface
 to the back-end function
 (2) Including/excluding a parity check/parity error function

Other customizations that will be discussed (in somewhat less detail) are:

 (1) Including some or all of the Configuration Space in the PLD
 (2) Generating signals for the back-end function

The means for customization will be modification of the AHDL design files using any standard ASCII text
editor. In this paper, the design file referenced will be the design for the target interface for Altera’s
product-term based devices. This file is called TAR_MAX.TDF.

34

5. Adjusting the Width of Address/Data Buses

The width requirement for the address and data buses connecting the PCI interface and the back-end function
vary with the needs of the back-end function. Changing these widths requires three modifications to the
AHDL design.

1. The number and names of the device pins corresponding to these buses must be changed to fit the

desired number and names of the signals.

2. The number of registers that hold the address and/or data information must be modified accordingly.

3. The number of tri-state buffers that control the passage of the address and/or data information

to the outside world must be changed to correspond to the new number of address and/or data lines.

In the TAR_MAX.TDF file, signals that connect to the outside world (via device pins) are defined in the first
part of the Subdesign section. This section is excerpted in Figure 6 below:

SUBDESIGN tar_max
(

-- PCI Interface Signals

 CLK : INPUT; -- PCI Clock
 AD[31..0] : BIDIR; -- Multiplexed address/data
 C_BE[3..0] : INPUT; -- Command/Byte enable
 PAR : BIDIR; -- Parity
 PERR : BIDIR; -- Parity Error
 SERR : OUTPUT; -- System Error
 FRAME : INPUT; -- Transfer Frame
 IRDY : INPUT; -- Initiator Ready
 TRDY : BIDIR; -- Target Ready
 DEVSEL : BIDIR; -- Device Select
 IDSEL : INPUT; -- ID Select
 RST : INPUT; -- PCI Master Reset
 STOP : BIDIR; -- Stop Request

-- Interface Back-End Device Signals

 Addr[7..0] : OUTPUT; -- Address From Device
 Data[31..0] : BIDIR; -- Data To/From Device
 -- Dpar : INPUT; -- Data Parity From Device
 BE[3..0] : OUTPUT; -- Configuration Byte Enables
 Dev_req : INPUT; -- Request From Device
 Dev_ack : OUTPUT; -- Transfer Complete Ack.
 Rd_Wr : OUTPUT; -- Read/Write
 Cnfg : OUTPUT; -- Configuration Cycle
 T_abort : INPUT; -- Fatal Error has occured
 Retry : INPUT; -- Target signaled a retry
 Reset : OUTPUT; -- PCI Reset
)

Figure 6

The address and data buses to the back-end function are the two lines (bolded) directly underneath the

35

comment line “Interface Back-End Device Signals”. Note that the keyword OUTPUT after the colon
indicates that the “objects” declared by the name Addr[7..0] are output pins. The first step to modifying the
width of these buses is to change the number ranges in the brackets following the names of the signals. For
example, the address bus (shown as being 8 bits in width) can be modified to be a 4-bit bus by changing the
line:

 Addr[7..0] : OUTPUT; -- Address From Device

to

 Addr[3..0] : OUTPUT; -- Address From Device

Likewise, the data bus Data[31..0]can be modified to any width with a similar operation. Note that the data
bus signals are defined to be of type BIDIR, indicating that they are bidirectional signals.

The second step is to change the number of registers that hold the address and/or data information and before
going to the tri -state buffers. The registers for the address information are called Addr_reg. The line of
AHDL in the TAR_MAX.TDF file that indicates the number (and name) of the address registers is in the
VARIABLE section. The line is below (note that the keyword DFF after the colon indicates that the
“objects” declared by the name Addr_reg[31..0] are D-type flipflops):

 Addr_reg[31..0] : DFF; -- Register the AD[]

The line of AHDL responsible for naming and numbering the data signals is a few lines below the address
register line:

 Data_reg[31..0] : DFF;

The lines of AHDL that state the number of tri-state buffers associated with the address and data pins are in
the same section (Variable). These lines are listed below (note that the keyword TRI after the colon
indicates that the “objects” declared by the names AD_tri[31..0] and Data_tri[31..0] are tri-state buffers):

 AD_tri[31..0] : TRI;
 Data_tri[31..0] : TRI;

Including/Excluding a Parity Check Function

The capability to check parity, produce a parity signal and produce a parity error signal exist within the
AHDL designs for both the Master and Target Interface. Parity is produced via another macrofunction,
called pci_par, which is referenced within the Master and Target interface designs (in Altera terminology, the
use of lower-level macrofunctions within higher-level macrofunctions is called “instantiation”).

Exclusion of the parity check signal and/or parity error signal involves “commenting out” portions of AHDL
code (commenting a line out is generally preferable to outright deletion for reasons of ease for future
modification, but deletion is an option as well). The lines of AHDL to be commented out correspond to:

(1) The parity and/or parity error pins

(2) The registers and node that hold the parity and/or parity error signals and their output enables

(3) The logic and connections for the parity and/or parity error signals

The declaration of the parity and parity error pins is included in the Subdesign section of the design file. In
the MAX_TAR.TDF file, they appear like this:

36

 PAR : BIDIR; -- Parity
 PERR : BIDIR; -- Parity Error

After being commented out, these lines would appear like this:

% PAR : BIDIR; -- Parity
 PERR : BIDIR; -- Parity Error %

The registers for the parity and parity error signals (and their output enables) are declared in the Variable
section. They appear like this:

 PERR_reg : DFF;
 PERRoe : DFF;

 PAR_reg : DFF;
 PARoe : DFF;

 Par_flag1 : DFF;
 Par_flag2 : DFF;
 Parity : NODE;

The above signals can be commented out by placing a percent sign before the first line and a second percent
sign after the last. Finally, the logic and connections for the parity and parity error signals appear in the
main body of the design file; percent signs can be used to comment them out in the same manner described
above. The signals to be commented out are shown below.

 PCI_parity.(AD[31..0], C_BE[3..0]) = (AD[31..0], C_BE[3..0]);
 Parity = PCI_parity.(Parity);

 PAR = TRI(PAR_reg, TRDYoe);

 PAR_reg.clk = CLK;
 PAR_reg.clrn = RST;
 PAR_reg = Read_BAR & Parity
 # !Read_BAR & PAR_reg;

 PARoe.clk = CLK;
 PARoe.clrn = RST;
 PARoe = ADoe;

 PERR = TRI(!PERR_reg, PERRoe);

 PERR_reg.clk = CLK;
 PERR_reg.clrn = RST;
 PERR_reg = Par_flag1 & Parity;

 Par_flag1.clk = CLK;
 Par_flag1.clrn = RST;
 Par_flag1 = S_data & !Rd_Wr & !IRDY & !TRDY
 # Write_BAR & !RD_WR & !IRDY &
 !TRDY;

 Par_flag2.clk = CLK;

37

 Par_flag2.clrn = RST;
 Par_flag2 = Par_flag1;

 PERRoe.clk = CLK;
 PERRoe.clrn = RST;
 PERRoe = S_data & !Rd_Wr & !IRDY & !TRDY
 # Backoff & !Rd_Wr
 # Turn_ar & !Rd_Wr
 # Idle & Par_flag2;

A designer who wishes to implement the parity check but not the parity error, can comment out only the
AHDL code corresponding to the parity error signal, and this will produce the desired result.

6. Other Customizations

There are a number of other ways for a designer to modify these macrofunctions. Any number of signals
might also be generated for the requirements of the back-end function. Modification of the AHDL code to
include the logic equations for these signals is all that is required to implement these signals. Another
possible change is to vary the amount of Configuration Space inside the programmable logic device itself.
The TAR_MAX.TDF design includes a 27-bit wide register for the BAR. Less registers might be used if
the memory requirements did not require the full 27-bit range. A designer might also wish to include more
of the Configuration Space inside the programmable logic device, for example the Command or Status
Registers. Including more of the Configuration Space inside the programmable logic device is particularly
suited to devices that have on-board RAM (such as the FLASHlogic family).

7. Hardware Implementation

This section discusses the actual implementation of a PCI interface in a programmable logic device. The
example that will be used is the Target interface placed into a MAX 7000 EPM7160E device. By
understanding how the Target interface fits into the EPM7160E, designers can get a clearer idea of the
capabilties of programmable logic in PCI interface applications.

The design file TAR_MAX.TDF was submitted to MAX+PLUS II and compiled, with MAX 7000 as the
target family. The design’s major features are listed below; a complete listing of the TAR_MAX.TDF
design file is available from a number of sources listed at the end of this paper

(1) PCI Target interface with 32-bit address/data connection to PCI bus
(2) 8-bit address and 32-bit data bus to back-end function
(3) Generates parity and parity error signals
(4) Generates system error signal
(5) Includes 27-bit Base Address Register

MAX+PLUS II placed the design into the smallest possible device in the family that would accommodate the
design: an EPM7160E in the 160-pin QFP package. The following excerpt from the report file (produced
by MAX+PLUS II during compilation) indicates some of the resource utilization:

Total dedicated input pins used: 4 / 4 (100%)
Total I/O pins used: 94 / 100 (94%)
Total logic cells used: 153 / 160 (95%)

38

Total input pins required: 12
Total output pins required: 17
Total bidirectional pins required: 69
Total logic cells required: 153
Total flipflops required: 123

As indicated in the report file excerpt, the design used all of the four dedicated input pins, 94% of the 100
I/O pins and, and 95% of the 160 macrocells. The reamining device resources are available for other
functions. Placed into the 12-ns version of the EPM7160E, the design also meets the 33-MHz performance
requirement for open PCI systems.

Many PCI Target designs do not require all of the functionality provided by the TAR_MAX.TDF design.
For example, some PCI interfaces might require fewer registers in the BAR, or no parity or system error
signal generation. Below, Table 1 lists some of these optional functions and the macrocell resources they
require; removing these functions (in the case that they were not required) would free up a corresponding
amount of resources.

Function Macrocells Used
Parity Check 4
Parity Error 4
Base Address Registers 1 per register

Table 1

If extra resources are required, a designer also has the option to choose a larger device. Two other members
of the MAX 7000 family are larger than the EPM7160E: The 192-macrocell EPM7192E and the 256-
macrocell EPM7256E. The same PCI Target interface design placed in these devices would yield more
extra resources (53 macrocells in the EPM7192E and 103 macrocells in the EPM7256E). The FLEX 8000
devices are also an option; this target interface design occupies about 65% of the resources of the 4,000-gate
EPF8452A, leaving about 150 registers and associated logic for other functionality.

39

Conclusion

A programmable logic solution to a PCI interface offers flexibility and options that a dedicated chip set
cannot. These options include the ability to customize the interaction with the back-end design, include or
exclude functions that may or may not be needed, and include back-end function logic into the
programmable logic device to conserve board real estate. Altera’s PCI interface macrofunctions are
designed to serve engineers as foundations upon which to build their own PCI interfaces. A number of
Altera’s devices are suitable for impementing PCI interface designs in addition to the one discussed in this
paper, including several members of the MAX 7000, FLEX 8000, MAX 9000, and FLASHlogic families.
Finally, Altera’s Applications group is available at (800) 800-EPLD to assist any engineer in utilizing the
macrofunctions to their best potential.

Obtaining the Macrofunctions

The PCI macrofunctions are available from several sources, including:

(1) Altera’s PCI Design Kit (obtainable from Altera Marketing at (408) 894-7000)
(2) Altera’s Applications group at (800) 800-EPLD or (408) 894-7000
(3) Altera Applications BBS at (408) 954-0104 in the form of the file PCI_10.EXE
(4) Altera’s ftp site: ftp.altera.com

40

VI. Altera’s PCI MegaCore Solution

Historically, PCI interfaces for PLDs have not been completely successful because of a number of factors,
including difficult-to-meet specifications, inadequate device resources in the smaller, fast devices that do
meet the specifications, the need to develop a memory or DMA interface, and the lack of a methodology to
both test the PCI interface early in the design cycle and ensure its compliance after modifications. Altera
has addressed these factors with the introduction of its PCI MegaCore function, called pci_a. This function
is the industry’s first paramaterizable combined master/target PCI interface that delivers high performance
and a complete design solution. The complete Altera PCI package includes:

l Parameterized configuration registers
l Prototyping board
l Software driver
l Embedded DMA engine and FIFO function
l Test vectors

The pci_a function has the following features:
l High data transfer rate
l Extensively tested, including hardware and simulation
l Uses FLEX¨ 10K embedded array blocks (EABs) for on-chip memory
l Supported by the OpenCore(TM) feature for instantiating and simulating designs in MAX+PLUS¨ II

before purchase
l Compliant with requirements specified in the PCI Special Interest Group’s (SIG) PCI Local Bus

Specification, revision 2.1 and Compliance Checklist, revision 2.1

Figure 1 shows a block diagram of the pci_a MegaCore function.

Figure 1: pci_a Block Diagram

41

The pci_a MegaCore function contains a DMA control engine that supports burst read and write data
transfers. To transfer data on the PCI bus, the system software loads the internal DMA registers. The function
is then ready to accept the local DMA request signal that enables the master to initiate data transfers on the
bus.

For example, in a burst read, the master stores the read information in the RAM buffer from the PCI bus.
After the burst transaction is completed, the pci_a MegaCore function indicates to the local side that it will
transfer data from the RAM buffer to the local side memory. Similarly, in a burst write, the function indicates
to the local side that it is ready to transfer data from the local side to the RAM buffer. When the RAM buffer
is full, or the pci_a MegaCore function has the last data word, the function requests access to the PCI bus.
After the arbiter grants the function access, the function will transfer all data from the RAM buffer to the PCI
bus.

In the pci_a MegaCore function, the target capability is used for single data phase accesses. Target accesses
are typically used to access configuration registers, internal DMA registers, and external target memory
space.

The pci_a MegaCore function offers high data bandwidth and zero-wait state burst data transfers. The
function can perform a zero-wait state PCI read with a bandwidth of 107 Mbytes/second and a zero-wait
state PCI write at 102 Mbytes/second. It also supports a 256-byte, header type-0 configuration. Table 1
shows the key performance characteristics for the pci_a MegaCore function.

Characteristic Values
Clock Rate 33 MHz

Read data burst transfer rate 107 Mbytes/second
Write data burst transfer rate 102 Mbytes/second

Table 1: Key pci_a Performance Characteristics

The pci_a MegaCore function is optimized for the EPF10K30RC240-3 and EPF10K20RC240-3 devices.
Future support is planned for FLEX 10KA devices. The pci_a MegaCore function uses less than 50% of
the logic elements (LEs) available in an EPF10K30RC240-3 device. The remaining logic elements (LEs) can
be used for user-defined local-side customization. Table 2 shows the typical device utilization for the pci_a
MegaCore function in the EPF10K30RC240-3 device with 1,728 LEs available.

Function LEs
pci_a MegaCore function (includes
complete DMA circuit)

850

Local side with custom logic 878

Table 2: Typical Device Utilization for pci_a

A PCI prototyping board is included in Altera’s PCI package for implementing and testing PCI designs. The
PCI prototype board contains an EPF10K30RC240-3 device that can be configured with a PCI design, a
connector socket for the PCI bus interface, and other sockets for accessing the EPF10K30RC240-3 device
I/O pins. The board also has 128 Kbytes of SRAM for the target address space and allows the local-side
function to interface with a standard parallel or VGA port.

A second-generation PCI MegaCore function will provide the same 33-MHz, zero-wait state performance as
well as a decoupled memory subsystem. This new function will give you the flexibility to use the existing
DMA controller to minimize design and development effort, or design a custom memory interface to meet
specific requirements of your design. Future PCI functions will provide enhanced performance and features.

42

Altera’s OpenCore(TM) feature allows you to “test drive” MegaCore functions like pci_a before you
purchase them. With the OpenCore feature, MegaCore functions can be instantiated in your design, and then
compiled and simulated using the MAX+PLUS II development system, giving you a preview of exactly how
the function will fit into an Altera device. When you are ready to program a device, you must license the
MegaCore function. To test-drive the PCI master/target MegaCore function using the OpenCore feature,
simply download the function from Altera’s world-wide web site
(http://www.altera.com) and try it in your design.

For more information about Altera’s PCI solution, refer to the PCI Master/Target MegaCore Function with
DMA Data Sheet or contact your local Altera sales representative.

43

VII. A VHDL Design Approach to a Master/Target PCI Interface

Leo K. Wong

Applications Engineer, Altera Corporation

Martin Won
Applications Supervisor, Altera Corporation

Subbu Ganesan

Associate Director of Hardware Engineering, ZeitNet, Inc.

ABSTRACT

This paper describes a design approach to implementing a Peripheral Component Interconnect (PCI)
interface that allows for the maximum amount of design flexibility while achieving an actual working
solution in a relatively short amount of time. The approach involves two key elements: VHDL and
programmable logic devices. The portability of VHDL and the rapid prototyping time of programmable
logic, combined with the flexibility afforded by both creates a design approach that provides the designer the
opportunity to make changes to the design while still working towards a final hardware solution. In the
experience of the ZeitNet project (an interface for an ATM adapter card), this approach yielded a
demonstratable product in four months; in another three months, burst mode was added to the design and
final testing was completed, resulting in a finished product in only seven months from product inception.
Furthermore, considerations for future development of PCI interface are also included.

1. INTRODUCTION

Most engineers are faced with the challenges of ever shorter production cycle, higher performance
requirements as well as cost pressure in every project. A well defined design methodology is critical in
meeting these goals. Our sample design is a PCI bus ATM adapter card. Table 1 shows the requirements of
the project.

High Performance Full PCI and ATM compliance; Zero-wait-state Burst
transaction; Sustaining full duplex line speed

Interoperability Product should be accepted by multiple platform for
maximum customer appeal.

Vendor Independence Need flexibility to migrate to future silicon technology if
desired.

Meet product rollout deadline Three to four month design cycle time limit from concept to
silicon.

Table 1 Project objectives

The following sections will discuss these objectives in details and explain how these objectives are met by
the proposed methodology.

44

2. ARCHITECTURE CONSIDERATIONS

Figure 1. Typical PCI Bus System with ATM Adapter

2.1 Performance

Bus bandwidth is important not only to networking performance but also system performance. The PCI
Bus is capable of high performance data transfer through its high bus bandwidth capacity. The maximum
PCI Bus transfer rate is:

Clock Frequency = 33Mhz
Bus Width = 4 Bytes = 32 bits
Max Transfer Rate = 133MB/sec

 = 1.06Gbit/sec

The SONET 155 Mbps ATM requires 134 MBps transfer rate, significantly less than the maximum PCI bus
transfer rate.

Performance, however, does not depend on bandwidth alone. In order to realize the full potential of the PCI
bus, burst transaction is expected to be implemented by the interface. PCI Bus specification enables
variable burst transaction size. The interface component should be able to handle variable burst size.

Moreover, a low bus latency is necessary to provide a quick turnaround time. The overall bus latency is
comprised of three parts:

l Arbitration latency - the time the Master waits after asserting REQ# until it receives GNT#
l Bus acquisition latency - the amount of time the device waits for the bus to become free after GNT# has

been asserted.
l Target latency - the amount of time that the target takes to assert TRDY# for the first data transfer.

While the ATM adapter project is a Master and Target combined PCI interface, all three types of latency
should be taken in careful consideration. The PCI interface component is challenged to implement the
design that meet the aforementioned performance requirements.

45

2.2 Interoperability

To ensure the widest possible market acceptance, products should be accepted by as many platforms as
possible. As a bus architecture, PCI promises processor independence. However, due to the evolving
nature of the PCI architecture, there are systems that does not adhere strictly to the latest standard. It is
highly desirable to have a versatile PCI interface component to implement the required modifications in
accordance with the operating platform.

2.3 Vendor Independence

Depending on the market demand and thus production volume, engineers should have the flexibility to
switch from one silicon technology to another. For instance, at mid-to-lower volume production,
programmable logic device is ideal for its flexibility, zero NRE cost and low inventory risk. In high
volume production, it might be more cost effective to migrate to a Masked Programmable Logic Device
(MPLD) or an ASIC solution.

An ideal engineering methodology should provide a quick migration path to the most cost effective silicon
solution in reaction to market demand. Proven transition path from one silicon technology to another
should be provided.

2.4 Design cycle

The ATM adapter project was under tremendous time pressure. The month was March, and ZeitNet was
scheduled to demonstrate their ATM adapter card at the Tokyo Interop show in July. There were fourteen
weeks available from product definition to silicon realization.

3. System Methodology

To achieve the project’s challenging goals: fully PCI and ATM compliant, low cost and flexibility within
three-to-four months, designers must weigh several inter-depending aspects of their engineering cycles.
Critical to a project’s success are the design entry method, EDA tools and the silicon choice.

3.1 Hardware Selection

At the time, to implement a PCI interface for the ATM card, there are mainly two selection: PCI chipsets or
programmable logic device.

Off-the-shelf PCI interface ASIC or PCI chipsets decrease the resources required for in-house development,
but the ones available on the market lacked the flexibility for customization. Due to this shortcoming, the
chipsets were deemed inappropriate for the project.

3.2 Design Entry

An industry standard high-level hardware description language is desirable to ensure smooth future
migration in technology. VHDL satisfied the need because of its wide acceptance in the EDA community.
While designers usually need to instantiate device specific primitive for optimal performance and area results,
careful modularization can lead to high degree of design re-use in future silicon technology.

By modularizing design, designers separate the universal behavioral code from the device specific primitives
instantiation. The behavioral core, written in VHDL, can be re-used in other synthesis tools when porting

46

to other silicon technologies. While the primitive instantiations maintain close and effective control over
the interface component.

3.3 PLD Selection

The next decision was to choose a programmable logic device that could implement a combined
master/target PCI interface within a reasonable amount of time. Among the range of PCI-compliant devices
offered by programmable logic vendors, FLASHlogic devices and MAX 7000E devices from Altera, and
XC7000 EPLDs from Xilinx were explored.

The first concern for a programmable logic implementation was fitting the entire combined master/target
interface into a single device. The FlashLogic devices were examined and their logic capacity is deemed
insufficient to fit all functionalities into the largest member of that family, although it did offer several
features that were attractive for PCI interface design, including very predictable timing, on-board RAM, and
open-drain outputs. The same resource limitations seemed to hold true for the XC7000 devices from Xilinx,
in addition to suspicions that the critical timing required for the PCI interface would be difficult to achieve in
those devices.

The final potential set of devices proved to be the ideal choice: MAX 7000E. By estimation, the largest
devices from the family would accommodate a combined master/target design.

3.3 EDA tool selection

Traditionally, there has always been tradeoff between design abstraction and efficient silicon control. On
one hand, using a proprietary semiconductor vendor tool provide efficient design and synthesis support for
the specific component, but it is usually difficult to port the design to other technologies. On the other hand,
by choosing a standard EDA design platform, designers risk sacrificing the tight integration, but gain the
ease of migration to various ASIC or gate array technologies.

The development tools chosen for this ATM project is MAX+PLUS II, which includes a VHDL compiler.
The tool can directly accept VHDL text entry, synthesize, place & route, simulate and generating
programming file for MAX 7000E device without the burden of third-party tool translation. This design flow
provides tight integration, allowing quick design changes and iterations. Moreover, MAX+PLUS II offers
proven migration path interfacing with major third party EDA tools through EDIF netlists and vendor
libraries.

To simulate the design on a board level, tools from Model Technology was employed. The process of
developing the VHDL code required for the design took about 2 weeks; simulation was completed one
month later.

4. IMPLEMENTATION

4.1 Implementing Functionality

In order to shorten the design cycle, VHDL design code was developed in parallel with the device selection
process; the goal was to work towards creating a functionally correct VHDL design using a VHDL simulator,
and by the time of its completion, place the design into a device.

47

Figure 2. Zietnet PCI Bus ATM Adapter

After a month of simulating the VHDL design and fine-tuning its functionality, ZeitNet was ready to fit the
design into their chosen device family. The date was nearing the end of May, which left the month of June
and some of July to fit the design, lay out the PCB, and test the overall product. In order to reduce the
development time, it was decided to proceed with the design without implementing the burst mode, since it
was not deemed absolutely necessary to demonstrate the basic functionality of the product in July. After
the show in July, ZeitNet’s engineers would revisit the design and add the burst mode. There was, of
course, an amount of risk associated with this decision, but ZeitNet’s engineers remained confident that they
could add the burst functionality to the MAX 7000E device without negatively impacting the overall product.

Compiling their VHDL with MAX+PLUS II revealed that the MAX 7000E device required would be the
256-macrocell EPM7256E in the 208-pin QFP package. Without the burst-mode capability, the design
occupied about 75% of the device’s logic resources and used about 100 pins.

4.2 Implementing Burst Mode

After exhibiting their product at the Interop show in July, ZeitNet set about adding burst mode to their PCI
interface. During the initial testing of their card, they discovered that most existing systems used host
bridges that limited transfers to host memory. Specifically, the limits were: 32 bytes for a burst read cycle
and 16 bytes for a burst write cycle. They designed their burst mode for 32-byte capability

This segment of the design process took a little over a month and a half, with much of the time devoted to
ensuring that burst capability would function in all tested platforms. These platforms include different PCI
machines such as Compaq, Dell, DEC-PC, Gateway, Micron, NEC PC and various other clones. With
burst mode, the entire combined Master/Target interface design occupied 220 macrocells, or about 86% of
the EPM7256E device. Even with the increased utilization, the ZeitNet designers were able to keep the
same pinout for the EPM7256E, and eventually brought the completed ZATM PCI-bus ATM adapter card to
market at the end of October.

5. PCI EXPERIENCE

The proposed platform: VHDL design entry and programmable logic silicon implementation successfully
meet all goals set forth at the beginning of the project.

On the side of PCI Bus, the ATM adapter card was able implement variable burst size transaction. In
addition, zero wait state read and write transaction was also achieved, providing the lowest possible bus

48

latency. These abilities actualize the full performance potential of the PCI bus. On the backend ATM
network, full duplex line speed was sustained.

In terms of migration ease, with the help of the tool, designers estimate that they would able to re-use 80-
90% of their VHDL code to port their design to an ASIC in the future. The versatility of the proposed
platform was proven as the same design was re-target for another programmable logic device, an EPF8820A,
a member of the FLEX 8000 PLD family, later in the production cycle.2

More importantly, Zeitnet was able to achieve all goals within the specified time frame: the product meet
the trade show demonstration as well as the production deadline.

6. FUTURE ROADMAP

Looking forward, there are several paths of modifications, mostly related to the evolving nature of the PCI
standard and systems offering PCI compatibility.

1. As noted earlier, the host bridges in most of the tested systems limited transfers to the host memory.

The adapter card was designed accordingly, but future host bridges is expected to provide larger
transfers in the future.

2. None of the tested system had implemented the latency timer. Correspondingly, no latency timer was
implemented in the adapter card. This functionality is expected to be added when latency is supported
by more systems.

These are functionality concerns for the future of PCI as an evolving architecture. Meanwhile, the interface
component should be versatile enough to handle these modifications.

2 While MAX 7000E is a AND-OR gates-based CPLD built on E2PROM technology, FLEX 8000 is a Look-Up Table based SRAM
technology.

49

Conclusion

From this case study, one can conclude that all engineering challenges were met. While the final product
not only meet release schedule, it also attain high performance and maintain a versatile future growth path.

It is obvious that the benefits of the proposed methodology can readily be extended to other areas of
electronic engineering. Flexible engineering control such as shortened time-to-market, versatile volume
adjustment, and vendor independence; high performance silicon technologies coupled with easy to use
software are universal advantages all designers should utilize.

Author biographies

Leo Wong is an applications engineer with Altera Corporation (San Jose, CA), where he is involved in PCI
design implementation, megafunction partners liaison, and programmable logic applications consultation.
Leo holds degree in Electrical Engineering and Computer Science from University of California at Berkeley.

Martin Won is the Applications supervisor of Technical Communications for Altera Corporation, where he
has worked for 5 years. His responsibilities include writing and publishing articles, creating and presenting
Altera's technical seminars, and producing Altera's quarterly newsletter for its customers. Mr. Won holds a
B.S. in Electrical and Computer Engineering from the University of California at Santa Barbara.

50

VIII. Interfacing a PowerPC 403GC to a PCI Bus

David Raaum, Staff Engineer

PLX Technology

David Greenfield, Manager, Development Tools
Altera Corporation

Martin S. Won, Member of Technical Staff

Altera Corporation

Introduction

The PowerPC 403 processors have proved to be successful engines for high-performance embedded systems
(switches, routers, printer engines) and I/O adapters (communications, disk control, imaging). The PCI bus,
already a well-established standard for PCs and servers, is also appearing in 32-bit embedded systems. This
article describes how to interface a PowerPC 403GC CPU to a 33-MHz PCI bus. The interface design
includes a PCI-to-host bridge device and a programmable logic device. With this implementation, the
PowerPC CPU can perform memory, I/O and configuration cycles upon the PCI bus. Additionally, any
master device on the PCI bus may access memory (DRAM) on the local bus. Finally, this implementation
allows bursts of up to 16 words in length.

PCI provides tremendous bus performance for embedded applications through 33 MHz system performance
and 32-bit burst mode capability. However, even after a processor is selected and the PCI interface is
chosen, abundant design options remain which impact system performance and time-to-market. This paper
addresses the issues of PCI function selection criteria from among standard product, programmable logic and
ASIC implementations. The paper also addresses design issues relating to interfacing the PCI bridge device
with the embedded processor and memory on the local bus. The paper presents a complete solution to
implement the PCI bridge, local bus interface and processor needs.

Our approach will be to first look at a PCI overview to understand its advantages. Then, we’ll focus on the
specific benefits offered for embedded systems by the PCI bus and the PowerPC 403 processor. Next, we’ll
look at a design that interfaces the PowerPC 403 to the PCI bus before concluding with an analysis of its
performance considerations.

The goal of PCI was to offer an open bus standard that provided high performance by allowing bus masters
to directly access the main memory, as well as providing a way for CPUs to directly access the devices
connected to the PCI bus.

PCI’s growth to higher bandwidth is ensured with an upgrade path from a 32-bit bus to a 64-bit bus.
Variable-length read & write bursts as well as scalable bus frequencies (from 16 to 33 MHz) broaden PCI’s
appeal. The PCI bus also benefits from lower cost. Similarities between the master and target interface
design allow a multiplexed-architecture design to fulfill both functions. Finally, the interface design is
optimized for implementation in silicon, allowing for interface costs to decrease in the same manner as any
other semiconductor solution produced in volume.

Besides better performance, another user benefit of PCI is the automatic configuration of PCI add-in boards
and components. PCI’s longevity is also improved by the fact that it is processor independent, has an
upgrade path to 64-bit addressing, and that it provides for both 3.3 and 5-volt signaling environments.

51

PCI has additional features in the areas of flexibility and reliability. PCI’s flexibility allows for bus masters
to directly access any other master or target device. Additionally, data integrity is maintained with parity
for both data and addresses.

Although PCI was initially developed for personal computing, the high bandwidth and real-time
deterministic response is ideal for data communications and industrial applications. PCI is now a viable
option for system implementations that previously considered Multibus and VME options. PCI is also used
extensively for intraboard communication within a system as PCI interfaces are now found on ethernet,
ATM, and other standard products. However, standard PCI interfaces are often not available for all devices
within a system and a PCI interface chip is needed for connection to the bus.

The PowerPC offers a number of advantages for embedded systems. First, it is a scalable processor
architecture, ranging from the 401GF (in the $10 to $15 range) to the 604, which is at the heart of some of
the industry’s most powerful workstations.

One of the features that fosters this scalability is a clean-layered technology that enables the adding and
deleting of features not applicable to a particular application (i.e., all features related to memory management
are clearly delineated and well contained). Also, instructions may execute in any order as long as the
results are consistent within ordered execution, which, along with an effort in avoiding instruction interlock,
allows easy implementation of superscalar designs with several execution units (the PowerPC 604 has six).

Another advantage of the PowerPC architecture is its workstation heritage, which has fostered better tools
and cross-platform development environments. PowerPC processors themselves are available from
multiple sources (IBM and Motorola), and they enjoy a wide range of support both in terms of development
tools and applications (over 100 third parties support PowerPC).

There are a couple different ways to build an interface between the PowerPC 403GC, its local bus, and a PCI
bus. These approaches include:

(1) Designing a custom ASIC from the ground up
(2) Designing a custom ASIC with an interface core
(3) Using a programmable logic device
(4) Using a standard PCI interface component and a programmable logic device (PLD)

The first approach, building a custom ASIC, has the advantage of resulting in a low-volume cost, single-chip
solution. However, of the available approaches, it is also likely to involve the lengthiest design
development time. The second option involves using a pre-existing PCI bridge core and requires a designer
to create the rest of the necessary logic. While this option offers the advantage of a shorter development
time, that benefit must be balanced with the cost of the bridge core (potentially $30K to $250K).

Another solution to consider is to build the interface and bridge completely in a programmable logic device.
This solution is similar to the ASIC solution in that designer must create the bridge design, but it is attractive
for its shorter development time and likely lower development costs (working prototypes are available,
debugged and turned around much more quickly).

The last solution to consider is to take advantage of existing PCI bridge components and use programmable
logic to implement the remaining required logic. This solution probably has the shortest development time
and cost of all the options, but also has the disadvantage of being a two-chip solution. Since it offers the
most clear advantages and relatively few disadvantages, it is this option that we pursue in this paper.

The functions fulfilled by the components in this solution are as follows: first, the standard PCI bridge
connects the local bus (CPU and DRAM in this case) to the PCI bus. The programmable logic device

52

supervises the transfers between the PCI masters and the DRAM as well as MUXing the DRAM address
lines between row and column.

The components that we chose for the interface design are the PCI9060ES from PLX Technology and the
EPM7128E from Altera Corporation. The PCI 9060ES is one of the members of the PCI 9060 chip family.
All the 9060 chips share the same register addresses and pinouts, but each has a different mix of features.
The 9060ES has all the major features of the 9060 except the DMA controller. DMA is not required in this
example because the 403GC has a DMA controller. Therefore the “DMA-less” 9060ES is the most cost-
effective solution for this application.

The EPM7128E is one of the high-performance Complex Programmable Logic Devices (CPLDs) from
Altera. The EPM7128E is an ideal choice for this application for its ability to integrate all the necessary
logic for the interface combined with its high performance (7 ns propagation delays in this case) which is
needed to meet certain critical timing requirements of this design.

<slide 18> shows the relationship between the two components that form the interface between the PCI bus
and PowerPC 403GC local bus.

This table shows the operational modes of the PCI9060ES. In the direct master mode, the 403GC can
access the PCI bus using memory, I/O or configuration cycles. One of the 8 available memory banks
provided by the 403GC is used to access the PCI bus through the PCI9060ES.

In the direct slave mode, a master device on the PCI bus can access the DRAM which is connected to the
403GC local bus. The direct slave FIFOS in the PCI9060ES allows 3-2-2-2 bursting to and from the
fast page mode DRAM. The DMA mode is not applicable to this design case.

There are also a number of local configuration registers in the PCI9060ES which must be programmed by
the 403GC before accesses can be made to the PCI bus. These configuration registers define base addresses,
address ranges, and local bus characteristics.

The following local configuration registers must be programmed before direct slave accesses to the local bus
DRAM can occur:

Register Offset
PCI Command Register 04h
PCI Base Address for Local Address Space 0 18h
Range for PCI to Local Address Space 0 80h
Local Base Address (Re-map) for PCI to Local
Address Space 0

84h

Local Arbitration Register 88h
Big/Little Endian Descriptor Register 8Ch
Bus Region Descriptors for PCI to Local Accesses 98h

These registers are accessed by running a 403GC cycle to the PCI9060ES with the 9060 chip select
(CS9060~) asserted. The address offsets for each register are shown in the table.

When the PCI9060ES has decoded and accepted a PCI cycle which is to be passed through to the local bus,
the LHOLD output is asserted. This signal is passed on through the EPM7128E to the 403GC HOLDREQ
input. When the 403GC is ready to release the local bus, it asserts HOLDACK. This signal is connected
directly to the LHOLDA input of the PCI9060ES. The PCI9060ES now has control of the local bus, and
can begin its cycle. When the PCI9060ES is finished, it negates LHOLD, thus giving the bus back to the
403GC. During burst reads, the 403GC doesn’t finish the DRAM cycle until after the PCI9060ES is done,
so the HOLDREQ signal is held for two extra clock cycles.

53

The PCI9060ES has both direct master and direct slave transfer capabilities. The direct master mode allows
a device (403GC) on the local bus to perform memory, I/O and configuration cycles to the PCI bus. The
direct slave mode allows a master device on the PCI bus to access memory (DRAM) on the local bus.
The PCI9060ES allows the local bus to operate asynchronously to the PCI bus through the use of bi-
directional FIFOs. In this application the PCI bus operates at 33 MHz while the local bus is clocked at 25
MHz.

Note that the address and data buses on the 403GC designate bit 0 as the most significant bit. Also, the
403GC does not produce the upper 6 address bits, so its maximum addressing range for one bank is 64
Mbytes.

A direct master or configuration write cycle is initiated by the 403GC when it asserts the chip select assigned
to the PCI9060 and PCI bus. As with read cycles, it also asserts an address (A6:29), read/write status
(PR/W), and byte enables (WBE[0:3]). The PCI state machine in EPM7128E device detects this cycle and
transitions to state P0 where the address is strobed into the PCI9060ES using ADS. The byte enables,
read/write status, and address are mapped in the same way as read cycles.

The READY input to the 403GC is negated, causing it to insert wait states. The PCI9060ES then runs the
requested PCI or internal register cycle and asserts RDYO~ when the write has been completed. The state
machine jumps to state P2 where READY is asserted to the 403GC. Once READY has been detected, the
403GC will complete the write cycle at the end of the next clock period. The state machine jumps to state
P3 during the last clock cycle of the transfer. The state machine then returns to PIDLE and waits for
another chip select from the 403GC.

A direct master or configuration read cycle is initiated by the 403GC when it asserts the chip select assigned
to the PCI9060 and PCI bus. It also asserts an address (A6:29), read/write status (PR/W), and byte enables
(WBE[0:3]). The PCI state machine in the EPM7128E device detects this cycle and transitions to state P4
where the address is strobed into the PCI9060ES using ADS. The WBE signals are mapped into the LBE
inputs to the PCI9060ES, and the PR/W signal is inverted to become LW/R. Since the 403GC only
produces 26 address bits, the upper six address bits to the PCI9060ES are forced to zero.

The READY input to the 403GC is negated, causing it to insert wait states. The PCI9060ES has a WAITI~
input pin which allows a master to control the duration of the read data presented by the PCI9060ES. At
the beginning of a read cycle, this input is asserted. The PCI9060ES then runs the requested PCI or internal
register cycle and asserts RDYO~ when the data is available. The state machine jumps to state P6 where
READY is asserted to the 403GC. Once READY has been detected, the data will be sampled by the
403GC at the end of the next clock period. The state machine jumps to state P7 where the WAITI~ signal
is negated, allowing the PCI9060ES to complete the read cycle. The 403GC reads the data at the end of
this cycle. The state machine returns to PIDLE and waits for another chip select from the 403GC.

A direct slave write cycle is initiated by the PCI9060ES when it asserts address strobe (ADS~). It also
asserts an address (A[31:2]), write/read status (LW/R), byte enables (LBE[3:0]), and burst last (BLAST~).
The DRAMCTL state machine in the EPM7128E device detects this cycle and transitions to state S1 where a
DRAM write cycle is initiated. If an unaligned write cycle is detected, then the state machine will go to
state S5. More about unaligned transfers later.

The XREQ and XSIZ[0:1] inputs to the 403GC are used to initiate a DRAM cycle. The XSIZ inputs are
decoded as follows:

54

XSIZ[0:1] Operation
00 Byte Transfer (8 bits)
01 Halfword Transfer (16 bits)
10 Fullword Transfer (32 bits)
11 Burst Fullword Transfer

The byte address is determined by the WBE2(A30) and WBE3(A31) inputs to the 403GC, and is derived
from the LBE outputs of the PCI9060ES. After the state machine asserts XREQ~, it checks BLAST~ to
determine if this is a single or burst transfer. If it is a single transfer, it waits in state S4 for the 403GC to
assert XACK~, indicating that the data has been written. The RDYI~ input to the PCI9060ES is asserted,
causing the write cycle to be completed. For a burst cycle, the state machine waits in state S2, where
XREQ~ is continuously activated. When BLAST~ is asserted, the

PCI9060ES is ready to finish the write burst. The 403GC always writes one extra word after XREQ~ is
negated.

In this application, the RDYI~ input to the PCI9060ES is negated while the last word is being written into
the 403GC twice. The causes the PCI9060ES to keep the same data on the bus. The address counter in
the DRAM MUX (inside the EPM7128E) is also prevented from incrementing, so the last word is just
written to the same location twice. When the last word is being written, RDYI~ is re-asserted to allow the
PCI9060ES to complete the write burst.

A direct slave read cycle is initiated by the PCI9060ES when it asserts address strobe (ADS~). It also
asserts an address (A[31:2]), write/read status (LW/R), byte enables (LBE[3:0]), and burst last (BLAST~).
The DRAMCTL state machine in the EPM7128E device detects this cycle and transitions to state S7 where a
DRAM read cycle is initiated.

The XREQ~ and XSIZ[0:1] inputs to the 403GC are used to initiate a DRAM cycle. The XSIZ inputs are
decoded as follows:

XSIZ[0:1] Operation
00 Byte Transfer (8 bits)
01 Halfword Transfer (16 bits)
10 Fullword Transfer (32 bits)
11 Burst Fullword Transfer

The byte address is determined by the WBE2(A30) and WBE3(A31) inputs to the 403GC, and are derived
from the LBE outputs of the PCI9060ES. During read cycles, all transfers are converted to full word
transfers by the PCI9060ES. After the state machine asserts XREQ, it checks BLAST~ to determine if this
is a single or burst transfer. If it is a single transfer, it waits in state S11 for the 403GC to assert XACK~,
indicating that the read data is available. The RDYI~ input to the PCI9060ES is asserted, causing the read
data to be loaded into the direct slave read FIFO. For a burst cycle, the state machine waits in state S8,
where XREQ~ is continuously activated. When BLAST~ is asserted, the PCI9060ES is ready to finish the
read burst. The 403GC always reads one extra word after XREQ~ is negated, but in this application, the
extra data is simply ignored.

In this application the PCI9060ES is programmed to burst a maximum of 4 fullwords for every address
strobe. Burst transfers do not cross 16 byte boundaries, and are sequential. Therefore the column address
counter in the EPM7128E only needs to be two bits wide. For longer burst lengths, the size of the column
address burst counter must be increased, and a carry output is needed to stop the PCI9060ES from bursting
when the counter is about to roll over. The BTERM input to the PCI9060ES is used to perform this
function.

55

Several features of the PCI 9060ES must be programmed, either from a serial EEPROM or from the 403GC
during initialization from the boot ROM. First, either memory or I/O Local to PCI access should be
selected. The 403GC should write the PCI base address for the 9060ES plus the PCI base addresses for all
the other adapters in the system. To achieve address translation between PCI and local buses, a local base
address and range is programmed into the 9060ES.

The 9060ES has two local address spaces, Space 0 and Expansion ROM. Each of these also are assigned a
PCI base address, local base address and local range. If expansion ROM is not required, this space may be
used for an additional address space.

Other features need to be programmed such as selecting the local devices’ width (i.e. 8, 16 or 32 bits), type
of burst mode and number of wait states. PLX supplies a software utility program on its Web site called
9060ES.EXE which queries the programmer about different attributes of the design and then creates a serial
EEPROM bit pattern to program the chip accordingly.

All PCI 9060 registers may be accessed from either the local bus or the PCI bus. Most are programmable
from the serial EEPROM as well. After the PCI and local base and range registers have been programmed,
the 9060 automatically translates master accesses from the PCI bus to the Space 0 and Expansion ROM
spaces (and Space 1 in the case of the 9060SD). The 9060ES also translates local bus master accesses to
PCI memory or I/O accesses.

When the PCI bus is accessing the 9060, the 9060 will deassert TRDY# when it is waiting on the local bus.
The PCI bus will deassert IRDY# or simply end the cycle when it is not ready.

When accessing the PCI bus, the 9060 can be programmed to deassert IRDY# when its FIFOs are full during
a Direct Master read. The PCI bus will deassert TRDY# if it is not ready.

When the local bus is accessing the 9060, the chip generates READYo# when data will be valid on the
following clock edge. The local processor may generate wait states by asserting WAITi#.

When accessing the local bus, the 9060 can generate a programmable number of wait states with WAITo#.
The local bus responds to 9060 requests with READYi#.

When the 9060 is a PCI target, it passes memory reads and writes directly to the local bus. For I/O Reads
and Writes, it breaks up bursts and does not pre-fetch.

When the 9060 is the master device, it translates local bus master cycles to the corresponding PCI address.
I/O Reads and Write bursts are broken up and no pre-fetching is performed.

Next, we’ll look at the performance of the interface design. We’ll first calculate how to calculate
throughput in a PCI system, and follow that with an examination of read and write throughput.

This section describes how to calculate throughput in any PCI system, regardless of the types of components.
The “bridge” in the following discussion refers to any bus-to-bus bridge such as the PCI 9060ES. A PCI
bus, in its 32 bit, 33 MHz format, provides a peak throughput of 132 Megabytes per second. However, this
is a theoretical limit which assumes infinitely long bursts, no address cycles and no bus delays. Three
factors determine the system throughput:

56

1. Devices on the PCI bus besides the bridge. When the PCI 9060ES chip is the host bridge, the performance
of the other devices on the PCI bus, including I/O controllers and PCI-to-PCI bridges, must be considered.
Given a heavily loaded PCI bus, long latencies on adapters will directly affect system performance.

2. The local bus subsystem such as the memory, I/O controllers and CPU. Local bus factors that commonly
influence system performance are local bus clock rate, number of wait states, CPU burst length, and the
scheme for arbitrating between the bridge and other masters on the local bus. For example, some systems are
optimized to give the local CPU the highest priority access to the local bus. This comes at the expense of PCI
to local bus throughput.

3. The bridge itself (i.e. PCI 9060ES). Some of the factors in the bridge that influence performance are:

(a) Number of cycles the bridge can burst
(b) Support for deferred reads
(c) Number of pre-fetches
(d) Whether the bridge can insert wait states with IRDY and TRDY rather than disconnecting
(e) FIFO depth
(f) Support for Memory Write and Invalidate Cycles
(g) Whether ongoing DMA cycles can be pre-empted by more urgent direct transfers
(h) Inherent bridge latency

This chart shows in simple terms the great influence of burst length and the PCI latency timer on maximum
system throughput.

Several steps are necessary for a host to access data on an adapter card through a bridge device. It must first
gain control of the PCI bus, then transfer the requested address to the bridge. The bridge must then gain
mastership of the local bus and transfer the address to it. At that point, a local device acknowledges the
address and responds.

The PCI bus can reach 132 MB/sec because it can transfer one long word per clock. Since the PCI bus is a
multiplexed bus, this peak value does not account for the initial address cycle, nor any of the termination
cycles mentioned in the PCI specifications. 132 MB/sec can only apply to writes, as reads necessitate a
turnaround cycle between the address and data phases.

This value is not unachievable, but will only occur under very special circumstances. To enhance
performance, most bridges, including the 9060ES, will prefetch data from the local bus, store it internally,
and feed it to the host as needed.

The read throughput is simply the amount of data transferred divided by the time it takes to transfer it. We
can arrive at the number of clocks elapsed for an individual burst simply by summing the amount of time
required for each step. The separate steps are:

1. The number of clocks elapsed before the host obtains control of the PCI bus
2. The time it takes the bridge to initiate a local bus cycle
3. The time it takes for the local bus to be granted to the bridge
4. The number of wait states that the local device requires before returning data
5. The amount of time required to transfer data from the local bus to the PCI bus
6. The number of long words in the burst

Logging the time of each step in terms of PCI clock cycles and adding in the number of clocks between
bursts will result in the total time required to transfer the amount of data in the burst. Since 132 MB/sec is

57

the result of transferring one long word per clock, the sustained throughput is 132 times the burst length
divided by the number of clocks required. The result will be a fraction of the peak PCI throughput.

Given a long latency as the read data is transferred to the PCI bus, the bridge’s internal FIFOs may fill up. In
this case, the bridge may disconnect the target bus. However, if a long burst was required, longer than the
depth of the internal FIFO, the bridge would have to re-arbitrate for the target bus when its FIFOs empty,
requesting read data again. With additional bus and chip latencies, this could impact throughput significantly.
In some bridges, including the 9060ES, a “keep bus” mode is available. In this mode, the bridge inserts wait
states to the target until space in the FIFO is available. This can mean a vast improvement in performance.

Not all of these variables are easily modified, but tuning them can generate impressive gains. This
calculation has been made for PCI to local bus reads, but the same reasoning, and conclusions, can be made
for a local to PCI bus read as well. However, if the FIFO depth exceeds the chip latency (7 clocks in the
case of the 9060ES), the keep bus mode has the same throughput as the “drop bus” mode. At this point, the
PCI bus would be reading one long word from the bridge's FIFOs for each long word the target bus provides.

With a deep enough FIFO, the prime determining factors in read throughput become the PCI burst length, the
local bus latency, the dead time between bursts, and the number of target wait states.

To perform a PCI write, the host must first gain mastership of the PCI bus. It needs to then transfer the
address to the bridge. The bridge will then gain control of the local bus, transferring the address to it. At this
point, the host can burst data to the bridge which will in turn burst it to the local bus. With an internal FIFO,
there will be no need for the PCI bus to wait for the bridge to gain the local bus. Any writes are simply
posted.

Throughput is the number of data transferred divided by how long it takes to transfer them. The amount of
total time required for a write burst is the length of the cycle on the PCI bus plus the time spent on the local
bus minus the time when the two overlap. The times required for a PCI write through a bridge are:

1. The number of clocks elapsed before the host obtains control of the PCI bus
2. The time it takes the bridge to initiate a local bus cycle
3. The time it takes for the local bus to be granted to the bridge
4. The number of wait states that the local device requires for each long word
5. The number of long words to burst

Logging the time of each step in terms of PCI clock cycles and adding in the number of clocks between
bursts will result in the total time required to transfer the amount of data in the burst. Since 132 MB/sec is
the result of transferring one long word per clock, the sustained throughput is 132 times the burst length
divided by the number of clocks. The result will be a fraction of the peak PCI throughput. This is usually
higher than the read throughput because chip latency is taken into account only once for a given write burst.

If the number of clocks between bursts (R) is less then target bus latency (BL) then the number of wasted
clocks is (BL-R) during every transfer. If the burst length (B) is greater than FIFO size and the FIFO size is
less than Bus Latency (BL) and Chip Latency (CL), then the number of wasted clocks is (BL+CL-FIFO)
during every transfer.

Similar to the reads, if the chip or target bus latency is too long, the bridge’s internal FIFOs may fill up,
causing the PCI bus to disconnect. If the burst length is longer than the FIFO, this can cause serious

58

performance degradation. Again, with a “keep bus” mode and the bridge deasserting TRDY when its FIFOs
are full, degradation can be minimized.

When FIFO depth exceeds chip latency, the prime determining factors in write throughput, like in the Read
case, become the burst length, the local bus latency, the number of target wait states and the number of
clocks between bursts. Again, while this calculation has been made for PCI to local bus writes, the same
reasoning and conclusions apply to local to PCI bus writes.

59

Conclusion

In summary, the factors that affect PCI system throughput performance are burst length, latency and FIFO
depth. The designer can realize the greatest performance gains by concentrating on these factors. The
graphs in this section provide a good picture of the effects of trading off these
variables.

The high-bandwidth of PCI provides an attractive option for embedded system design. The key to a
successful PCI product is leveraging strengths of each appropriate product. Standard product PCI interfaces
provide performance and time-to-market, but do not always include every possible local bus interface option.
Programmable logic devices are ideal for customization and enable the designer to specify exact system
attributes to match design constraints.

All PCI systems do not provide identical bandwidth; one important element in selecting an optimal PCI
solution is to determine the exact requirements and select appropriate components. This presentation
provides the tools to determine system bandwidth needs and predict performance with various options.

Software for design entry and simulation utilizes either Altera’s MAX+PLUS II tools for schematic capture,
HDL entry and compilation, or uses 3rd party tools from Synopsys, Mentor Graphics, Cadence, or number of
other vendors.

References
“PowerPC 403GC to PCIbus Application Note” - PLX Technology
“PCI 9060 Data Sheet” - PLX Technology
“MAX 7000 Programmable Logic Device Family Data Sheet” - Altera Corporation

60

IX. HIGH PERFORMANCE DSP SOLUTIONS IN ALTERA

CPLDS

Simon Redmile, Altera (UK) Limited

INTRODUCTION

With the increasing complexity and performance requirements being demanded for new digital signal
processing (DSP) applications, many traditional solutions are struggling to keep pace. Designers of these
DSP applications are often forced to choose between flexibility and performance due to the limited solutions
available. On the one hand, DSP processors offer flexibility and low cost but only moderate real time
performance due to their inherent architecture. In applications demanding high throughput and real-time
processing then designers must consider using multiple DSP processors at considerable cost. On the other
hand, fixed-function DSP devices and ASICs (application specific integrated circuits) offer significant
performance enhancements but at the expense of flexibility. Obviously these solutions have their drawbacks
in terms of associated risk and up-front non-recurring engineering (NRE) costs. Figure 1 shows the trade-offs
associated with these various options.

Flexibility

Performance

Programmable
Digital Signal

Processor
Programmable
Logic Device

Fixed Function
Circuit

ASIC

Figure 1. Tradeoffs associated with traditional DSP solutions versus CPLDs

1. HIGH PERFORMANCE DSP

DSP is nowadays used in many applications for numerous different tasks such as signal conditioning or data
extraction. Applications include:

• Data acquisition • Image processing

• Telecommunications • Video processing

• Voice processing • Data communications

• Radar imaging • Wireless communications

61

Many of these applications require real-time processing, such as image processing techniques using MPEG
compression/decompression, and requires processing performance of thousands of MIPS (millions of
instructions per second). In order to achieve this, extremely powerful DSP solutions are required. Altera can
provide solutions to many of these high performance tasks such as RF-IF (radio frequency - intermediate
frequency) digital filtering, FFTs (Fast Fourier Transforms), and image processing algorithms.

This paper explores the use of hardware techniques to provide high performance DSP solutions in Altera
CPLDs (complex programmable logic devices). Algorithms have been optimised for the FLEX series of
devices. This includes both the FLEX8000A and FLEX10K logic devices. In addition to this, examples of
applications are given such as FIR (finite impulse response) filtering, DCTs (discrete cosine transform) as
used in image processing, and FFTs.

2. VECTOR PROCESSING: An Alternative ‘MAC’ Architecture

In terms of a typical DSP device architecture then the ‘MAC’ (multiplier-accumulator) is probably the most
prevalent since this forms the basic building block for most DSP algorithms. However, these MAC functions
result in a performance bottleneck in programmable DSP processors, although they do offer flexibility and
can be used in many different applications. However, an alternative technique, that of vector processing, can
be applied to CPLDs in terms of a hardware implemented solution rather than software (as in DSP
processors). Flexibility is offered in CPLDs simply because they are made up of generic logic blocks (logic
elements in the case of FLEX devices) and devices contain from a few hundred to several thousand elements.
Therefore, a particular DSP algorithm, whatever size, can be targeted to a suitably sized device. In addition
to this, FLEX devices are SRAM-based and hence can be re-programmed (re-configured) in circuit to take
new algorithms, or, in the case of FLEX10K, on-board memory (EABs - embedded array blocks) can be used
to store algorithm data such as filter tap coefficients.

In the case of a traditional MAC-based algorithm, then this can be illustrated if we look at a conventional
FIR filter algorithm. This example is based on an 8 tap filter :-

 8
y(n) = Σ x(n) h(n)

 n = 1

where y (n) refers to the nth filtered output sample, where n is the number of filter taps

 x(n) refers to the nth input sample

 h(n) refers to the nth coefficient of the FIR filter

If we then expand this algorithm and implement it in block diagram form then Figure 2 represents the
multiplier-accumulator algorithm. Note: m and w represent the width (ie. number of bits) for the coefficient
data (h(n)), and the input and output data width (x(n) & y(n)) respectively.

62

x(n)

∑
Yn

h1 h4h3h2

D Q D Q D Q D Q
X(1) X(2) X(3) X(4)

h5 h8h7h6

D Q D Q D Q D Q
X(5) X(6) X(7) X(8)

w

m

w

Multiplier

Adder

Figure 2. Conventional FIR filter block diagram

This clearly shows the multiply and addition functions that are used for each tap (delayed input sample). If
we attempted to map this functionality directly into a CPLD using existing macrofunctions (such as
multiplier and adder blocks) then the resultant performance would equate to a sampling rate of 2-5 MSPS
(megasamples per second), which gives us no advantage over a DSP processor. However, by taking a
different approach and using the CPLD device architecture more efficiently, we can extract considerably
more performance for MAC-type algorithms.

2.1 LOOK-UP TABLE (LUT) BASED ARCHITECTURE

Implementing addition functions in CPLDs is extremely efficient and no real optimisation is required for this.
However, it is the multiplier function that results in a performance bottleneck in programmable logic devices
or FPGAs (field programmable gate arrays). We can, however, use the architecture in a different manner to
produce very fast multiplies. Both the FLEX8000A and FLEX10K devices are made up of logic elements
(LEs) which contain both register and combinatorial functions, as shown in Figure 3 :-

4 Data
inputs

Cascade in Cascade out

Logic output
to Row or
Column

D Q

Look-up
Table
(LUT) Cascade

Less than 2 ns

Figure 3. FLEX8000A Logic Element - showing look-up table (LUT)

The conventional method for implementing multipliers is using a shift and add approach, which
unfortunately results in a large and relatively slow function. However, rather than calculating the multiplier
result real time, we can use the LUT (look-up table) as a ROM whereby the expected result is already stored.
Remembering that the 4-input LUT (as above) is in effect a 16 x 1-bit RAM (Figure 4) then can build say a 2

63

x 2 bit multiplier using 4 logic elements, rather than the more conventional approach which requires 12 logic
elements.

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

1

InputA InputB InputC Input D

LUT Result16 x 1
 RAM

Figure 4. 4-Input Look-Up Table (LUT) as a 16x1 bit RAM

If we take Figure 2 as a example, then we can build a vector multiplier where one multiplicand is a constant
(as in the case of most DSP algorithms) as follows. Using only the first 4 taps (x(1) to x(4)) in order to
simplify this example, we will now build a vector multiplier. So, we now have the following multiplication
to perform :-

y = [x(1) x h(1)] + [x(2) x h(2)] + [x(3) x h(3)] + [x(4) x h(4)]

The following example uses 2-bit positive integers (although this can be applied to signed integers as well)
and two’s complement arithmetic :-

h(1) = 01, h(2) = 11, h(3) = 10, h(4) = 11
x(1) = 11, x(2) = 00, x(3) = 10, x(4) = 01

If we expand this :-

 Multiplicand h(n) = 01 11 10 11
 Multiplier x(n) = 11 00 10 01 *

 --
 Partial Product P1(n) = 01 00 00 11 = 100
 Partial Product P2(n) = 01 00 10 00 = 011

 --
 011 000 100 011 = 1010 Result

The partial products P1(n) and P2(n) can be added together either horizontally or vertically without affecting
the result, which is 1010. Because each component of h(n) is constant for any given fixed-coefficient
multiplier, we can use the LUT even more efficiently. If we take the sum of all the partial products P1(n)
(which is 100 in this case), then we can see that the LSB (least significant bit) for each x(n) (for the 4
multipliers) uniquely determines the value for P1 (ie. 100) ie. x(n)1 = 1001 and results in P1 = 100. Therefore,
we have 16 possible values for x(n)1 which can be mapped into the LUT, as shown below:-

64

 x(n)1 P1 Result

 0000 --> 0 00 + 00 + 00 + 00 = 0000
 0001 --> h(1) 00 + 00 + 00 + 01 = 0001
 0010 --> h(2) 00 + 00 + 11 + 00 = 0011
 0011 --> h(2) + h(1) 00 + 00 + 11 + 01 = 0100
 0100 --> h(3) 00 + 10 + 00 + 00 = 0010
 0101 --> h(3) + h(1) 00 + 10 + 00 + 01 = 0011
 0110 --> h(3) + h(2) 00 + 10 + 11 + 00 = 0101
 0111 --> h(3) + h(2) + h(1) 00 + 10 + 11 + 01 = 0110
 1000 --> h(4) 11 + 00 + 00 + 00 = 0011
 1001 --> h(4) + h(1) 11 + 00 + 00 + 01 = 0100
 1010 --> h(4) + h(2) 11 + 00 + 11 + 00 = 0110
 1011 --> h(4) + h(2) + h(1) 11 + 00 + 11 + 01 = 0111
 1100 --> h(4) + h(3) 11 + 10 + 00 + 00 = 0101
 1101 --> h(4) + h(3) + h(1) 11 + 10 + 00 + 01 = 0110
 1110 --> h(4) + h(3) + h(2) 11 + 10 + 11 + 00 = 1000
 1111 --> h(4) + h(3) + h(2) + h(1) 11 + 10 + 11 + 01 = 1001

Note: x(n)1 refers to the LSB of each multiplier x(n).

The partial product P2 can also be calculated in a similar manner, except the result must be shifted left by
one bit before adding P1 and P2. In this example, the result is four bits wide and therefore, the adders must
also be four bits. Figure 5 shows the four 2-bit constant multipliers using this technique of vector
multiplication (similar to ‘bit-slicing’).

Note that both LUTs
are identical. Each
LUT consists of 4
separate FLEX logic
elements (ie. 16x1
LUTs).

x(2)

x(2
)
1

x(2
)
2

x(3)

x(3
)
1

x(3
)
2

x(4)

x(4
)
1

x(4
)
2

LUT(2)
A1 A2 A3 A4

LUT(1)
A1 A2 A3 A4

x(1)

x(1
)
1

x(1
)
2

4 4
P(1)P(2)

DataOut

2

5

2 2 2

2

Figure 5. Four 2-bit input vector multipliers

In order to add more bits of precision, then it is simply a case of adding more LUTs and adders, both of
which can be pipelined to increase performance further. Table 1 gives results for a selection of multipliers,
which can use either signed or unsigned input data.

65

Multiplier Size Performance
Non-pipelined (A-2)

A-4

A-2

8 x 8 139 LEs 30.0 ns 83 MHz 106 MHz
10 x 12 282 LEs 39.5 ns 66 MHz 89 MHz
16 x 16 550 LEs 47.9 ns 51 MHz 69 MHz

Table 1. Optimised vector multiplier results for FLEX8000A devices

3. FIR FILTERS USING VECTOR MULTIPLIERS

If we apply this technique to FIR filters then we can achieve very high performance filtering at over 100
MSPS. In the case of a linear phase response FIR filter, we can also use the symmetry to reduce the amount
of multipliers needed and hence improve area and performance results. The coefficients (h(n)) are
symmetrical about the center values and as such we perform an addition operation on the input samples
before the multiplication step. So, from Figure 2, we find that h(1) and h(8) are identical, as are h(2) and h(7)
and so on. Therefore, we add x(1) and x(8) together before performing the multiply, and so on. Figure 6
shows an example of a 7-bit, 8-tap FIR filter as implemented in a FLEX8000A device.

4X8 LUT 4X8LUT 4X8 LUT 4X8 LUT 4X8 LUT 4X8 LUT4X8 LUT 4X8 LUT
8 8 8 8 8 8 8 8

S 1 S 2 S 3 S 4

∑

2

∑

2

∑

2

∑

2

∑
4

∑
4

∑
16

P1P5 P4 P3 P2P8 P7 P6

Yn

Figure 6. Vector multiplier for a 7-bit, 8-tap FIR Filter

Note: S1, S2, S3 and S4 are the pre-added input samples from the 8-taps.

Using this method, other filter types can also be implemented, including:-

• decimation and interpolation filters,
• video filters (ie. two-dimensional convolvers)
• anti-symmetrical and asymmetrical FIR filters
• IIR (infinite impulse response) filters eg. Butterworth Chebychev-I filter

Results are given in Table 2 for different filter sizes using 8-bit input sample width, providing over 100
MSPS performance. Note: The clock rate for these pipelined filters equates to the sampling rate since 1 clock

66

cycle provides 1 output result.

Filter Type Input

Precision
Internal

Precision
Output

Precision
Size Performance

A-4

A-2
8 8 17 17 296 66 MSPS 101 MSPS
16 8 10 10 468 75 MSPS 101 MSPS
24 8 10 10 653 74 MSPS 100 MSPS
32 8 10 10 862 75 MSPS 101 MSPS

Table 2. FIR Filter Performance & Size in FLEX8000A Devices

4. IMAGE PROCESSING USING VECTOR MULTIPLIERS

Digital image processing encompasses a wide range of applications from medical imaging and satellite
image processing to more traditional areas such as radar and sonar processing systems. For many of these
applications, including such standards as JPEG and MPEG, there are numerous standard chipsets available
now or in the near future. However, programmable logic such as the FLEX10K in particular, has plenty to
offer in this field.

There are many applications where unique requirements dictate that a custom solution be provided.
Examples include :-

• Non-standard frame sizes - eg. some medical applications involve image sizes up to 4K x 4K pixels (non-
interlaced).
• Frame rates - processing may be required in excess of 30 frames per second, such as when real time, or
accelerated processing of high speed (slow motion) image sequences is needed.
• Other operations - such as image re-sizing, may be required at the same time as compression. Both
operations can be performed during the processing of the transform, rather than separately.
• Image format conversion.

The Altera FLEX10K family is particularly suitable for image processing applications, since it offers an
embedded array block (EAB), which can be configured as a fast static RAM with up to 80MHz throughput.
The EAB can in fact be configured to provide a 256 x 8-bit RAM which is the same size as an MPEG
macroblock (ie. with two luminance and two chrominance blocks - 4:2:2 format). For other standards, four 8
x 8, or one 16 x 16 pixel block can be stored in one EAB. Additionally, four DCT quantisation tables, or a
JPEG or MPEG Huffman coding table can fit into one EAB. The EAB also offers the capability of storing
intermediate values during processing of certain transforms, as we can see below in the case of the DCT
(Discrete Cosine Transform).

4.1 OPTIMISED DCT FOR USE IN FLEX10K

The DCT is used in many image processing standards (eg. MPEG and JPEG) and as such is used to convert
image data into the frequency domain before applying such techniques as
image compression or re-quantisation. A standard DCT requires of the order of 2048 ‘software-equivalent’
operations to complete. There are a number of optimised solutions, for example Feig’s algorithm which
requires only 556 operations. However, Altera have produced an optimised hardware version, using the
technique of vector multipliers, that takes only 400 operations and is hence faster.

For a two dimensional DCT algorithm, the formula is as follows :-

67

C(u,v) = c(u)c(v) Σ
N 1

x = 0
f(x,y) cos cosΣ

N 1

y = 0

(2x + 1)uπ
2N[] (2y + 1)vπ

2N[]

This can be separated into two identical 1-dimensional DCTs, as follows :-

= c(u)c(v) Σ
N 1

x = 0
cos (2x + 1)uπ

2N[] f(x,y) cosΣ
N 1

y = 0

(2y + 1)vπ
2N[]C(u,v)

 1-D DCT formula

Each 1-D DCT can then be implemented in a FLEX10K device using vector multipliers and adders, as
shown in Figure 7.

s 4 s 5s 3 s 6s 2 s 7s 1 s 8

Video M ultiplier
(h1, h3, h5, h7)

y 1 y 5

V e c to r M u ltip lie r

R esults y3, y7
Available on consecutive

C lock C ycle

R esults y2, y4 ,y6 ,y8
Available on consecutive

C lock C ycle

h 4

VideoM ultiplier
(h0, h2)

Figure 7. An 8 sample 1-D DCT implemented using vector multipliers

Between the first and second 1-D DCT operations, intermediate values for the processed image data (ie. pixel
blocks in this case) are stored in the FLEX10K’s EAB. By using two EABs, as shown in Figure 8, the first
DCT block can write to one EAB, whilst the other DCT block reads from the second EAB. This leads to
improved performance and maximum throughput of image data.

68

8

8

1-D DCT
Block 1

Staging Register

EAB A

Data In
Addr Addr

Control Block

8
Staging Register

Address Generator
A

Output Data y n

Data In: x n

Address Generator
B

EAB B

1-D DCT
Block 2

Data Out

Data In

Data Out

Figure 8. Two dimensional DCT - using 1-D DCT engines & 2 EABs

This implementation results in a 40MHz operation and can perform real-time 8 x 8 pixel block DCTs on a
1280 x 1024 frame at 30 frames per second. There are currently no low cost, off-the-shelf chipsets that will
achieve this kind of processing throughput (for JPEG or MPEG) with workstation size image resolution. The
2-D DCT will fit into an Altera EPF10K50 and utilises only 56% of the device, allowing additional
processing blocks to be added, such as compression etc.

5. FAST FOURIER TRANSFORMS (FFTs)

Another use for the vector multiplier is in the implementation of FFT algorithms. FFTs have many
applications in signal processing, such as signal analysis, which may be found in test equipment, radar
processing, or even communications. Again the vector multiplier technique has been applied to give an
optimal FFT processor for use in the FLEX10K architecture. The processor uses multiple parallel ALUs
(arithmetic logic units), and optimised datapaths and control logic, to achieve FFT throughput of an order of
magnitude greater than generic DSPs and custom solutions.

To compute the fast Fourier transform (FFT) of a sequence, the following formula is applied to a given input
sequence x(n) and with a selected window function w(n) :-

 n - 1
Output sequence y(k) = Σ x(n) w(n) e

-j(2π kn/N) where k = 0,, N-1

 n = 0 and x(n) is complex

Using a radix two approach, whereby fewer complex multiplications are required, FFTs of various lengths (ie.
number of complex points) can be implemented from 256 up to 32K points. Depending on data widths and
memory architecture desired, FFTs in the range of 256 to 512 points can be implemented with on-board
memory resources ie. EABs. For greater lengths, it is necessary to use external RAM. Results for a variety of
FFTs are given in Tables 3 and 4.

69

Length

Data / Twiddle
Precision

Memory Size (LEs) Performance

512 16 / 8 Single 2000 LEs 186 µs
512 8 / 8 Dual 1150 LEs 94 µs
512 12 / 12 Dual 1970 LEs 94 µs
512 16 / 16 Single 2993 LEs 190 µs

Table 3. FFT Processor - optimised for FLEX10K with internal RAM

Length

Data / Twiddle
Precision

Memory Size (LEs) Performance

1024 16 / 16 Single 2993 LEs 411 µs
1024 16 / 16 Dual 2993 LEs 207 µs
2048 16 / 16 Dual N/A 907 µs
8192 16 / 16 Dual N/A 4.267 ms

32768 16 / 16 Dual 3100 LEs 9.8 ms

Table 4. FFT Processor - optimised for FLEX10K with external RAM

70

CONCLUSION

We have seen that using a novel hardware approach to DSP algorithms, we can in fact extract considerably
more performance out of a CPLD than we could if we used DSP processors or indeed custom ASIC solutions.
Using this vector multiplier, we can provide the basic building block for numerous applications, such as FIR
filtering, Fast Fourier Transforms (FFTs) and Discrete Cosine Transforms (DCTs). There are indeed many
other examples where, in addition to replacing DSP chipsets for certain functions, we can also use
programmable logic to off-load some of the signal processing and improve the overall throughput of the
system. For more information on any of these applications, please refer to the Altera DSP Design Kit or
contact Altera directly.

REFERENCES

1. Speed Optimised FIR Filters in FLEX8000 Devices by Simon Redmile (1995).
2. Altera DSP Design Kit version 1.0 (1995).
3. Digital Signal Processing by Oktay Alkin (1994).
4. Automated FFT Processor Design by Martin Langhammer & Caleb Crome (1996).
5. Image Processing In Altera FLEX10K Devices by Caleb Crome (1996).
6. CPLD Methods For Fast, Economical DSP by Simon Redmile & Doug Amos (1995).

71

X. Enhance The Performance of Fixed Point DSP Processor

Systems
: Enhance The Performance of Fixed Point DSP Processor Systems by adding a Programmable Logic

Device as a DSP Coprocessor

David Greenfield , Target Applications Manager

Caleb Crome, MegaCore Engineer

Martin S. Won, Applications Supervisor

Altera Corporation, 3 West Plumeria, San Jose, CA, USA

Introduction

DSP processors can easily implement complete algorithms with impressive performance; however, one
function within the system implementation often takes up an inordinate amount of processing bandwidth,
which effectively minimizes the bandwidth of the entire system. These high-bandwidth functions are often
low in complexity but high in throughput demands. Programmable logic devices can be utilized as DSP
coprocessors to off load these functions thereby freeing up the DSP processor to implement the more
complex functions with greater speed, dramatically improving overall system performance. System-level
functions that are enhanced with the DSP coprocessor approach include spread-spectrum modems, fast
Fourier transform acceleration, and machine vision.

The purpose of this paper is to discuss a means of enhancing the overall performance of fixed-point DSP
processor based systems by off loading low-complexity, high-throughput functions onto programmable logic
devices (PLDs) acting as DSP coprocessors. This method utilizes a low-cost PLD that significantly
improves overall system performance without adding significantly to the overall system cost or severely
impacting system board space requirements. The paper will begin by examining existing DSP design
options. Next, the arithmetic function capabilities of programmable logic devices (these functions being the
foundation of most DSP functions) will be examined. Afterwards, the paper will explore programmable
logic’s capacity to act as the most common type of DSP function: the finite-impulse response (FIR) filter.
Finally, a few specific application examples where programmable logic has been used to supplement a DSP
processor will be presented.

1. DSP Design Options

There are several options available for designers to build DSP functions. The most commonly used ones
are: DSP processors, ASICs, and Application-Specific Standard Products (ASSPs). Each of these options
have their own set of advantages and disadvantages: Fixed-point DSP processors are a typical low-cost
option, but are too slow to address real-time applications; floating-point DSP processors may be fast enough
for these applications but are too expensive. ASIC solutions are typically high-performance and have two
options: a “build your own” (multiply accumulate engine) or a core approach. DSP cores are typically
limited to high-volume consumer applications. Additionally, both ASIC and ASSP solutions limit
flexibility and ASIC solutions have the added disadvantage of lengthening time-to-market.

72

2. The Application of Programmable Logic

Programmable logic fills the gap where both flexibility and high-speed real-time performance are required
for specific DSP applications. The graph below in Figure 1 shows conceptually where programmable
logic (specifically, FLEX programmable logic from Altera Corporation) compares in speed and flexibility to
the traditional DSP solutions:

Flexibility

FLEX DSP

ASSPs

Performance

DSP Processor

ASICs

[Figure 1]

For low-throughput designs, any solution will adequately support DSP computational needs; a low-cost
microcontroller or microprocessor provides an excellent solution. As performance requirements increase to
the 10KSPS to 1MSPS range, DSP processors provide an ideal solution that addresses both performance and
flexibility.
Between 1 and 10 MSPS a DSP processor reaches limitations and alternate solutions must be examined.
These solutions include multiple DSP processors or DSP cores and programmable logic (both as primary
processor and as coprocessor). In the range of 10 MSPS to 150 MSPS, PLDs provide ideal performance.
The number of functions also impacts overall system bandwidth needs - the more functions performed, the
earlier the solution reaches bandwidth limitations. This idea is portrayed in Figure 2 below:

Data
Throughput
(SPS)

System
Implementation

Building Block
Implementation

Function
Implementation

10K

1M

100K

100M

1G

ASIC

DSP
Processor

MCU/MPU

Multiple
DSP Processors

Multiple
DSP Cores

PLD

[Figure 2]

Above 150 MSPS, an ASIC is the only single-chip solution that provides adequate performance. An ASIC
will also provide an attractive option at lower performance level if the volume is high enough.

73

3. Arithmetic Capability of Programmable Logic

DSP functions are composed largely of arithmetic operations. The speed of programmable logic devices in
performing DSP-type functions is therefore dependent on their ability to perform arithmetic operations. In
order to understand programmable logic in this capacity, the structure and composition of programmable
logic devices will be examined. Specifically, this section will focus on look-up table-based PLDs, which
are the PLDs that are best suited for DSP functions.

Look-Up Tables, or LUTs can implement any function of N inputs, where N is the number of inputs to the
LUT (see Figure 3 below). For example, the 4-input LUTs found in FLEX 8000 and FLEX 10K devices
can implement 4-input AND, OR, NAND, NOR, XOR, etc. Functions that require more than 4 inputs are
split between multiple LUTs. In FLEX devices, the LUTs are supplemented by carry chains, which are
used to build fast adders, comparators, and counters. Together with a flip-flop, a LUT and carry chain make
up a Logic Element, or LE (see figure 3).

LUT

Carry
Chain

DFF

Carry-In
(from previous LE)

S1

LE1

LUT

Carry
Chain

DFF S2

LE2

A1
B1

A2
B2

Carry-Out
(to next LE)

[Figure 3]

The speed of the carry-chain can be seen in adders that are built utilizing it; in the fastest speed grade, the
following speeds can be obtained:

Adder Size Speed

two 8-bit inputs 172 MHz
two 16 bit inputs 108 MHz
two 24 bit inputs 77 MHz

74

Beyond addition, LUT-based PLDs can provide high speed multiplication as well. The following table
shows performance and utilization data for different-sized pipelined multipliers in FLEX 8000 PLDs:

Multiplier Size Fmax (MHz) Logic Cells Latency
8x8 103.09 145 4

10x10 86.95 251 5
12x12 81.99 337 5
16x16 68.46 561 5

Note: The pipelined multipliers used in this benchmark were built using the parameterizable multiplier
LPM_MULT available from Altera Corporation.

4. FIR Filters in PLDs

Since it is apparent that programmable logic can perform well in the arithmetic functions that compose most
DSP-type functions, the next step is to study the implementation of an actual DSP function in a PLD. In
this section, a FIR filter design is placed into the FLEX architecture and its characteristics are examined.

A conventional 8-tap FIR filter structure has eight 8-bit registers arranged in a shift register configuration.
The output of each register is called a tap and is represented by x(n), where n is the tap number. Each tap is
multiplied by a coefficient h(n) and then all products are summed (see figure 4).

X(n-7)

h1 h4h3h2

X(n+1)
D Q7

X(n) X(n-1) X(n-2) X(n-3) X(n-4) X(n-5) X(n-6)

h5 h8h7h6

y[]

D Q D Q D Q D Q D QD Q D Q

[Figure 4]

A FIR filter simply multiplies a number of past sample values (or taps) by the same number of coefficients,
then the results are added together to obtain the result. The equation for the filter in Figure 4 is:

y n x n h x n h x n h x n h

x n h x n h x n h x n h
() () () () ()

() () () ()
= + − + − + − +

− + − + − + −
1 2 3 4

5 6 7 8

1 2 3
4 5 6 7

In the FIR filter implementations described in this paper, the multiplications take place in parallel, which

75

means that only one clock cycle is required to calculate each result. A common term used to describe this
function is a “multiply and accumulate” or MAC.

Consider a linear phase FIR filter with symmetric coefficients (the coefficients are symmetric about the
center taps). Linear phase means that the phase of signals going through the filter varies linearly with
frequency. If the filter depicted in Figure 4 had symmetric coefficients, then the following would be true:

h(1) = h(8)
h(2) = h(7)
h(3) = h(6)
h(4) = h(5)

Which means that the equation for the output could be converted into the following:

y n h x n x n

h x n x n
h x n x n
h x n x n

() [() ()]
[() ()]
[() ()]
[() ()]

= × + − +
× − + − +
× − + − +
× − + −

1

2

3

4

7
1 6
2 5
3 4

By factoring the coefficients out, the function now only requires 4 multiplication operations, instead of 8.
This conversion reduces the multiply hardware required by 50%. The design for this equation is shown in
Figure 5:

h1 h4h3h2

∑
Yt

x(n+1) D Q D Q D Q D Q
7

DQDQDQDQ

∑ ∑∑∑
s1

s4s3s2

8 8 8 8

Vector Multiplier

X(n) X(n-1) X(n-2) X(n-3)

X(n-4)X(n-5)X(n-6)X(n-7)

[Figure 5]

76

The vector multiplier multiplies four constants, h1, h2, h3, h4, by four variables, s1, s2, s3, s4. The fact that
the coefficients are constant can be used to build a more efficient LUT-based multiplier than the standard
multiplier approach. Specifically, this approach takes advantage of the fact that there are a limited number
of total possible products for a given multiplicand. To understand this approach, consider the case where
the multiplicands are 2-bit numbers:

If the impulse response hi is:

 h1 = 01, h2 = 11, h3 = 10, h4 = 11

and si is:

 s1 = 11, s2 = 00, s3 = 10, s4 = 01

Writing out the multiplication in long form results in:

hi = 01 11 10 11
si = 11 00 10 01
 ---- ---- ---- ----
 01 00 00 11 = 100 = p0
 01 00 10 00 = 011 = p1
 ---- ---- ---- ---- ------
 011 000 100 011 = 1010 = yi

where p0 and p1 are partial products.

Each partial product (pi) is uniquely determined by the four bits si(1-4)

 . The partial products (pi) are the
added together to produce the final yi. Since all hi are constant, there are only 16 possible partial products
(pi) for each value of si(1-4). These 16 values can be stored in a LUT of 4-bit inputs and outputs in a
programmable logic device. To calculate the final result yi, each pi is added together, with each successive
pi shifted to the left by one bit relative to the previous one, as shown in the diagram above. The diagram
below shows the contents of the LUT for the given hi value in the example above.

si0 p0
1000 => 01+00+00+00 = 0010
1001 => 01+00+00+11 = 0100
1010 => 01+00+10+00 = 0011
1011 => 01+00+10+11 = 0110
1100 => 01+11+00+00 = 0100
1101 => 01+11+00+11 = 0111
1110 => 01+11+10+00 = 0110
1111 => 01+11+10+11 = 1001

si0 p0 -- LUT Value
0000 => 00+00+00+00 = 0000
0001 => 00+00+00+11 = 0011
0010 => 00+00+10+00 = 0010
0011 => 00+00+10+11 = 0101
0100 => 00+11+00+00 = 0011
0101 => 00+11+00+11 = 0110
0110 => 00+11+10+00 = 0101
0111 => 00+11+10+11 = 1000

Figure 6 displays a visual conception of a 4-input, 2-bit vector multiplier. The LSB (bit 0) of si goes to the
least significant LUT. The MSB (bit 1) of si goes to the most significant LUT. The outputs of each LUT
(the corresponding pi) is then added to obtain the result.

77

LUT(0) and LUT(1)
are identical

Each LUT = 4 separate
FLEX 16x1 look-up
tables

Partial
Sums

LUT(1)
A1 A2 A3 A4

LUT(0)
A1 A2 A3 A4

4 4
P(0)P(1)

1

FIR Filter Response

5

S(3) S(4)

S(
4)0

S(
4)1

S(2)

S(
2)0

S(
2)1

S(
3)0

S(
3)1

S(1)

S(
1)0

S(
1)1

2 2 2 2

Shift Left
for Magnitude

Partial
Products

[Figure 6]

This vector multiplier concept can be extended to values of higher bit -widths. Figure 7 below shows a 4-
input, 8-bit vector multiplier.

4X8 LUT 4X8LUT 4X8 LUT 4X8 LUT 4X8 LUT 4X8 LUT4X8 LUT 4X8 LUT
8 8 8 8 8 8 8 8

s1 s2 s3 s4

∑

2

∑

2

∑

2

∑

2

∑
4

∑
4

∑
16

p0p4 p3 p2 p1p7 p6 p5

Yt

[Figure 7]

As shown in the diagram, the LSB of each si goes to the least significant LUT. Each successive bit of si

78

goes to the LUT that is one bit more significant. The outputs of each LUT are then shifted & added for final
result.

As an example, suppose that each pi happens to be FFh or 11111111b. The addition of all 8 pis would then
be broken down into 4 sets of 2 input additions:

 11111111
 11111111
———————————
 1011111101

The results of these 4 additions becomes 2 sets of additions:

 1011111101
 1011111101
 ———————————
 111011110001 - these 2 results are then added:

 111011110001
 111011110001
 —————————————
 1111111000000001 - which is the final result.

5. Using the Vector Multiplier in FIR Filters

Applying the vector multiplier concept to FIR filters allows programmable logic to achieve high
performance and low resource utilization. The following table illustrates performance and resource
utilization characteristics for several FIR filters implemented in FLEX 8000 programmable logic (the values
shown in the column marked “A-2” and “A-3” refer to different speed grades of the devices).

FIR Filter Utilization Performance (MSPS)
 (Logic Cells) A-2 A-3

8-Tap Parallel 296 101 74
16-Tap Parallel 468 101 75
24-Tap Parallel 653 100 74
32-Tap Parallel 862 101 75
64-Tap Serial 920 7 5

The resource utilization of a FIR filter in a PLD grows as both the input value width increases and as the
number of taps increases. The following graph shows the relationship between resource utilization and
input value width (assuming 8-bit coefficients).

79

LEs vs. input width for 8-tap filters
(8-bit coefficients)

0
100
200
300
400
500
600

0 5 10 15 20

Input Width

LE
s Parallel

Serial

[Figure 8]

This is a graph of estimated LEs versus width. Notice that the line for the serial-type filter graph doesn’t
pass through the origin. This is because there is some overhead for the controller. The graph below
(Figure 9) shows the relationship between resource utilization and the number of taps in the filter (assuming
8-bit coefficients).

LEs vs Taps for 8-Bit Input, 8-Bit Coefficient Filters

0

500

1000

1500

2000

2500

0 20 40 60 80

Taps

LE
s Parallel

Serial

[Figure 9]

6. Case Studies of PLDs used as DSP Coprocessors

Having established the efficiency of implementing DSP-type functions in programmable logic in terms of
performance and resource utilization, we can examine specific case studies where PLDs have been used
effectively as DSP coprocessors. The first case involves a design for a spread spectrum modem for a
wireless LAN. Two different designs were considered for the modem; in the first, both correlation and data
demodulation were performed by the DSP processor, a TMS320C25-50. In the second approach, a PLD
(FLEX 8000) is used to perform the correlation (see Figure 10 below).

80

System #1

TMS320C25-50

Correlation
Data Demodulation

System #2

TMS320C25-50EPF8452A-4

 Correlation Data
Demodulation

[Figure 10]

The efficiency of each system was measured, given pseudo-random number (PN) sequences as input (filter
size). To illustrate the range of improvement that PLDs could offer, different devices were included in the
test, as well as different speed grades. The results for each system are outlined in the table below:

Filter Size
(PN)

System Chip
Rate

Required
LCELLs

System

15-Bit Sequence 10 MHz - DSP Processor
15-Bit Sequence 100 MHz 266 DSP Processor & EPF8452A-2
15-Bit Sequence 66 MHz 266 DSP Processor & EPF8452A-4
31-Bit Sequence 66 MHz 553 DSP Processor & EPF8636A-4

The PLD coprocessor implementation increases performance by a factor of 6 with a low-cost PLD and by a
factor of 10 with a high-performance PLD. Increasing the PN size with the single-chip DSP processor
implementation would have significantly degraded performance. In PLDs, increased PN is handled by
adding parallel resources, which increases the resource utilization (and potentially changes the size device
needed) while providing the same performance.

In the next case study, we examine a system that requires a fast fourier transform (FFT). FFTs are often
used to calculate the spectrum of a signal. An N-point FFT produces N/2 bins of spectral information
spanning from zero to the Nyquist frequency. The frequency resolution of the spectrum is Fs/N Hz per bin,
where Fs is the sample rate of the data. The number of computations required is approximately N(logN).

Many applications though only require a narrow band of the entire signal spectrum. The FFT calculates the
entire spectrum of the signal and discards the unwanted frequency components. Multirate filtering
techniques let you translate a frequency band to the baseband and reduce the sample rate to 2x the width of
the narrow band. An FFT performed on reduced-sample-rate data allows either greater resolution for same
amount of computations or equivalent resolution for a reduced amount of computations. Thus, the narrow
band can be calculated more efficiently. In addition to computational savings, an added benefit is the
elimination of the problem of an increased noise floor caused by the bit growth of data in a large-N FFT.

Fixed-point DSP processors can perform both the FFT algorithm and the pre-processing frequency
translation. One method of translation takes advantage of the aliasing properties of the rate compressor.
This rate compression in the frequency domain results in images that are spaced at harmonics of the
sampling frequency. The modulation and the sample rate reduction can be done simultaneously; the signal
is rate-compressed by a factor of M to get the decimated and frequency-translated output. An (N/M)-point

81

FFT is then performed on the resulting signal, producing the spectrum of the signal, which contains only the
narrow band.

Figure 11 shows the narrow band translation process; the top shows the modulation of the band-passed signal,
where the modulating impulses are spaced at intervals of 2/M. The middle shows the narrow band
translated to base band because it is forced to alias. Finally, the bottom shows the full spectrum of the final
signal y(m) where zero corresponds to w1 and the Nyquist frequency corresponds to w2.

K=0 K=9K=8K=7K=6K=5K=4K=2 K=3K=1

0 w1 w2

π

π

0 /M 2 /Mπ π

w

w

π π0 = W1 = W2 2

w? w/M

[Figure 11]

The entire narrow-band filtering process can be done in a DSP processor, but uses significant bandwidth.
Further, the preprocessing and FFT processing cannot be done simultaneously, as both the narrow-band
filtering and the primary filtering deplete the available bandwidth of a fixed-point DSP processor. A
solution suggests itself from an examination of this process in block diagram form (Figure 12).

bandpass
filter

M FFT
x(n) w(n) y(m)

X(w)

[Figure 12]

Since the filtering tasks can be separated in to different processes, different devices can be used to performs
the tasks. Specifically, a PLD can be used to perform the preprocessing, and the DSP processor can be used
to perform the FFT operation. To understand the benefits a PLD in this role would bring, we must first
examine the performance of a single DSP processor when performing the whole operation.

82

The following table contains the specifications for an ADSP2101 processor.

 Execution Time
DSP Processor

Decimation
Factor

Max Sampling
Rate

1024-point FFT1 5.3 msec 193 KHz
128-point FFT1 0.49 msec
128-tap FIR for 1024
Samples

0.22 msec

128-point FFT
128-tap FIR

0.71 msec 8 1.4 MHz

128-point FFT
128-tap FIR

0.49 msec
coprocessor

8 2.1 MHz

 1Radix-2 DIT FFT with conditional Block Floating Point

The ADSP2101 can sustain a maximum sampling rate with a 1024-point FFT of 193 KHz. Maximum
frequency is determined by dividing the execution time (5.3 msec) by 1024 points to get 5.2 usec per point
which corresponds to frequency of 193 KHz. A 128-point FFT can support a higher sample rate but also
involves a decimation factor of 8 to elevate the maximum sampling rate further. The input decimation
filtering can be done optimally with a 128-tap FIR filter; this FIR filter in the ADSP2101 takes 0.22 msec for
the 1024 points that are downsampled to provide the 128 points for the FFT. This 0.22 msec comes from
13.3 usec for a 128-tap FIR filter divided by decimation factor (8) times the 128 points. The DSP processor
must timeshare the two tasks and can support a maximum sampling rate of 1.4 MHz.

Offloading the decimating filter to a DSP coprocessor enables the maximum system frequency to go back to
2.1 MHz. A serial, 128-tap, 10-bit FIR filter can fit into a single programmable logic device (such as an
EPF10K30). This serial implementation supports 5 MSPS throughput which easily supports the maximum
sample rate. The DSP processor is now free to focus entire bandwidth on the FFT algorithm which elevates
the maximum frequency substantially. Figure 13 below shows a block diagram of this implementation.

bandpass
filter

M FFT
x(n) w(n) y(m)

X(w)
EPF10K30 ADSP2101

128-point 2.1 MHz 260 KHz

[Figure 13]

Another option is to implement the FFT completely in a programmable logic device. Megafunction
compilers are available that provide impressive performance for FFT processing with complete compilation
flexibility. FFTs obviously requires larger PLD device than the pre-processing filter; resource utilization
and performance statistics are outlined in the table below (the PLDs used for these measurements were
FLEX 10K devices):

83

Length
(points)

Precision Memory Size
(LCells)

Speed

512 8 Data
8 Twiddle

Dual - Internal 1150 94 usec

1024 16 Data
16 Twiddle

Dual - External 2993 207 usec

32K 16 Data
16 Twiddle

Dual - Internal 3100 9.8 msec

7. System Implementation Recommendations

The first step in the process is to evaluate system bandwidth requirements. If the DSP processor is not
operating at capacity, PLD coprocessing will not add any benefit. If however, the DSP processor operates
at full bandwidth capacity and critical functions/algorithms must wait for processor resources, PLDs as a
coprocessor may provide a significant performance benefit. The system should then be analyzed to
determine which function/algorithm depletes the bandwidth. If a single function uses greater than 1/2 of
available bandwidth this function may be offloaded efficiently; functions related to filtering (preprocessing,
decimating, interpolating, convoluting, FIR, IIR, etc.) will most efficiently be implemented in programmable
logic devices.

Programmable logic provides an ideal balance between the flexibility of a DSP processor and the
performance of a DSP ASIC solution. Programmable logic also provides a strong complement to a DSP
processor to offload computationally intensive functions/algorithms as a DSP coprocessor. In addition to
improving system performance, this coprocessor methodology also acts to protect investments that have been
made in DSP processor tools, code, and experience by extending the potential applications that could initially
be done with a given DSP processor.

84

XI. HDTV Rate Image Processing on the Altera FLEX 10K

Doug Ridge1, Robert Hamill1, Simon Redmile2

1 - Integrated Silicon Systems Ltd., 29 Chlorine Gardens,

BELFAST, BT9 5DL, Northern Ireland.
2 - Altera UK Limited, Solar House, Globe Park, Fieldhouse Lane,

MARLOW, Buckinghamshire, SL7 1TB, England.

Abstract
Image and video processing megafunctions have been developed for implementation on the
Altera FLEX 10K range of CPLDs. The megafunctions, which include edge detectors, median
filters, fixed and adaptive filters and DCT blocks, have been optimised for the FLEX 10K
architecture to allow more functionality to be incorporated into each device.

The megafunctions can operate at pixel rates of up to the HDTV standard of 54 MHz. Their size
and high performance allows the CPLDs to be utilised as front-end image processing engines
operating in real-time. The ability to incorporate major building blocks for image compression
onto a single device also opens their use to the development of real-time imaging systems such
as JPEG, MPEG and H.261.

Introduction

Performing real-time image processing at pixel rates of up to the HDTV standard of 54 MHz has been an
operation typically only associated with ASICs. However, the gate counts and clock rates of the Altera FLEX
10K range of CPLDs has enabled digital designers to look at these devices as flexible solutions to their
image processing problems.

Distributed arithmetic techniques and novel methods for function implementation, coupled with the high
density and range of features on the Altera FLEX 10K range of advanced CPLDs, have enabled the
development of a range of high performance front-end video and image processing functions. The functions
are optimised for the Altera architecture to maximise performance whilst minimising the chip area occupied.
The minimisation of the area occupied by each function enables the maximisation of the functionality which
can be incorporated into the design for a single CPLD.

Section 2 looks at the FLEX 10K architecture to investigate its applicability for the implementation of high
performance image processing functions. This briefly covers the main structure of the architecture and new
features which are being built into the devices. These will further reduce the implementation size of each
image processing function, by increasing function performance, thereby allowing a reduction in the level of
pipelining for each device, or allowing the use of more compact architectures.

Section 3 documents the techniques used to optimise the implementation of each function for the FLEX 10K
architecture and section 4 then lists the range of megafunctions which have been created for real-time image
processing. As examples, a number of these megafunctions are studied in more depth to give their size and
possible variants. Section 5 then draws conclusions as to the impact that these developments will have in the
field of real-time image processing.

85

1. Altera FLEX 10K Architecture

Altera’s FLEX 10K, with it’s two unique logic implementation structures - the embedded array and the logic
array - offer maximum flexibility and performance in addition to the density of embedded gate arrays.
Ranging from 10,000 to 100,000 usable gates, the devices offer a number of unique features which are
ideally suited for use in high performance image processing.

IOEIOE IOEIOE

IOE

IOE

IOE

IOE

IOEIOE IOEIOE

IOE

IOE

IOE

IOE

IOEIOE

IOEIOE

Embedded
Array
Block
(EAB)

Embedded
Array
Block
(EAB)

Logic
Element
(LE)

Logic Array
Block
(LAB)

Row
FastTrack
Interconnect

Logic ArrayColumn
FastTrack
Interconnect

Local
Interconnect

Embedded
Array

I/O Element
(IOE)

 Figure 1. FLEX10K Block Diagram

rack

Feedback

DA TA1
DA TA2
DA TA3
DA TA4

PRESET
CLOCK

CLEAR

Carry-In

T
Interconnect

o FastT

Carry-Out

PRN

CLRN

D Q

DFF
Look-Up

Table
(LUT)

Carry
Chain

Cascade
Chain

Cascade-In

Cascade-Out

LAB

ENA

Two LE Outputs:
 Look Up Table &
 Register Can Be
 Used Independently

Cascade & Carry
Chains Improve
Performance

 Figure 2. FLEX10K Logic Element

The logic array (see figure 1) consists of multiple logic elements (figure 2) for which DSP algorithms can be

86

optimised to take advantage of the 4-input look-up table, the fast carry-forward and cascade chains and the
register. These features allow the basic building blocks for image processing algorithms, namely multiply
and accumulate, to be fully optimised to run at the necessary 54MHz video rate. In addition to this, the
FastTrack Interconnect provides fast predictable routing between the logic elements.

The embedded array blocks (EABs) each provide 2Kbits of RAM and can also be configured as logic. Larger
RAM blocks, of up to 2048 bits depth (figures 3 & 4), can be built up by cascading the EABs in parallel
without loss of performance. As embedded RAM, intermediate pixel data can be stored, allowing for a faster
data throughput.

 Figure 3. FLEX10K EAB

256 x 8

512 x 4

1024 x 2

2048 x 1256 x 8

256 x 8

512 x 4

512 x 4

256 x 16 512 x 8

OR

Figure 4. EAB Memory Implementation

87

Finally, with the introduction of an on-board PLL (phase-locked loop), the devices provide two more
important features. Firstly, ClockLock minimises clock skew within the device and significantly increases
the in-system performance. Secondly, ClockBoost, multiplies the frequency of the incoming clock by as
much as 2x allowing, for example, internal time-division multiplexing of functions.

The above features together provide a flexible, high performance programable logic family that is very well
suited to image processing applications, and allows integration of functionality on a similar scale to gate
arrays.

2. Megafunction Development
Image processing megafunctions have been developed in VHDL and are written at a low level to ensure that
highly optimised solutions are produced when synthesised to the FLEX 10K architecture.

Coding the megafunctions in VHDL also allows the designs to be parameterised. This enables the simple,
straightforward and rapid modification of the megafunction, prior to synthesis, allowing the same function to
be used for image processing systems which differ in terms of data word lengths, word formats and
performance requirements. The hardware solutions produced for each parameterised megafunction are highly
optimised for the chosen parameters rather than being a generalised solution for all the possibilities.

Distributed arithmetic techniques have also been utilised in the development of image processing
megafunctions. This is not new, but is highly applicable to the minimisation of the area occupied by each
megafunction. These techniques are particularly applicable to image processing operations such as edge
detection where filter coefficients are both fixed and easily implemented in hardware using shift and add
operations.

High megafunction performance is achieved through the utilisation of several different word formats and the
use of novel computer arithmetic techniques. Finally, the utilisation of several data word formats including
signed-binary positive-negative encoding in the implementation of image processing megafunctions has
enabled the throughput requirements of HDTV imaging to be met, without incurring large hardware
overheads.

3. Image Processing Megafunctions
Image processing megafunctions which have been developed for FLEX 10K implementation are given in
table 1. Parameters for each megafunction are indicated by a black dot in the respective column of the table.
The majority of these are capable of HDTV rate image processing. All are capable of processing images in
real-time at PAL and NTSC rates.

Table 1. Image processing megafunctions.

Megafunction

D
at

a
w

or
ds

Ty
pe

Tr
un

ca
tio

n P
ro

gr
am

m
ab

ili
ty

S
iz

e

P
er

fo
rm

a
nc

e

Edge detectors ® ® ® ®
Image enhancement filters ® ® ® ®
Averaging filters ® ® ® ® ®
Median filters ® ® ® ® ®
FIR filters ® ® ® ® ® ®
IIR filters ® ® ® ® ® ®
Object detection ® ® ® ® ® ®
Morphological filters ® ® ® ®
DCT ® ® ® ®

88

To illustrate the parameterised nature of the megafunctions, consider the possible variants of the Laplacian
edge detector megafunction. The input data words are expected to be in an unsigned binary format. However,
the word lengths of the input data words may differ from one application to the next and include, for example,
8-, 10- and 12-bit word lengths. This has been taken into consideration in the development to allow the
creation of megafunctions with the specific data word lengths required by the end application.

Furthermore, the pipelining parameter of the megafunction can be set to select the desired performance,
whilst minimising the silicon area occupied by the megafunction implementation.

A parameter to select the desired data word formats for the output has also been included. For instance, the
most compact edge detection megafunction implementation has a data word which is in signed-binary
positive-negative encoding format. This format is used in the megafunction architecture to achieve the high
throughput rates required of HDTV rate applications. However, the designer may not wish to post-process
the results when in this format. For this reason the designer can select the desired output data word format,
prior to compilation.

89

Conclusions

A range of parameterised image and video processing megafunctions have been developed and optimised for
Altera FLEX 10K implementation. Combining many years of VLSI architectures expertise with the
advanced programmable hardware of the Altera FLEX 10K family has produced megafunctions with the
capability of processing images in real-time at pixel clock rates of up the HDTV standard of 54MHz.

The size of the megafunctions and the gate counts of the FLEX 10K family enable multiple image processing
blocks to be incorporated into the design for a single device. This allows a single device to be utilised as a
high speed processing engine in support of other slower processors, or as a stand alone image processing
machine.

The ability to incorporate larger functional blocks such as the DCT on Altera devices and operate these in
real-time opens Altera devices up for use in the real-time implementation of systems level imaging functions
such as JPEG, MPEG and H.261.

90

XII. Automated Design Tools for Adaptive Filter Development

Martin Langhammer

Kaytronics, Inc.

Introduction

This paper will examine methods of creating high performance adaptive filters in programmable logic.
Tools for automatically generating adaptive filters will be described, along with system performance and
resource requirements. Building blocks for these adaptive structures, such as multipliers and simpler filters
will also be shown.

1. Filter Building Blocks

The most important element of a hardware implementation of an adaptive filter is a multiplier. The
feedforward stage of any adaptive filter is comprised of multipliers, as is in many cases the feedback stage.
At this point, a clarification must be made on the definition of a multiplier; in some cases the multiplicative
operation required for the feedback correlation in adaptive filter types such as the LMS, zero forcing, and
decision directed filters may be implemented in a look up table format, rather than a multiplier structure. In
these cases, the result of the multiply is often the error value, with the sign dependent on the direction to the
closest symbol to the estimate.

To facilitate the efficient, and automated, implementation of adaptive filters, a new signed multiplier
algorithm for programmable logic was developed, and an LPM (library of parameterized modules) was
written using AHDL Version 6.1 from Altera. The table below summarizes resource and performance data for
several multipliers, implemented in Altera FLEX 8000 devices.

 Pipelined Non- Pipelined
Multiplier Size A-4 A-2 Size A-4 A-2
8 x 8 139 LC 83 MHz 106 MHz 136 LC 42.3 ns 30.0 ns
10 x 12 282 LC 66 MHz 89 Mhz 260 LC 63.3 ns 39.5 ns
16 x 16 550 LC 51 Mhz 69 Mhz 537 LC 66.5 ns 47.9 ns

Table 1: Multiplier Data

Note: Performance data for the non-pipelined multipliers includes on and off chip delays. System
implementation utilizing these structures will be faster, as the signal sources and destinations will be on chip,
rather than off chip.

As can be seen from the table, there is a predictable logarithmic relationship between word width and size,
and a linear relationship between word width and performance. All multipliers in Table 1 have full output
precision. Small size and speed gains may be achieved by cropping LSBs from the output, which is also
automatically handled by the same multiplier LPM. Table 2 gives some examples:

91

 Pipelined
Multiplier Size Performance (A-2)
8 x 8, 10 bits result 132 LCs 109 Mhz
10 x 12, 14 bits 269 LCs 87 Mhz
16 x 16, 18 bits 534 LCs 70 Mhz

Table 2: Partial Output Multiplier Data

The combinatorial multipliers required for many of the correlation calculation are only one level of logic
deep, and therefore will operate as fast as the pipelined multiplier in that part. The size will be approximately
that of the precision of the error signal used for the correlation.

2. Filter Design and Implementation

An LPM has been developed to automatically generate LMS filter structures for programmable logic. The
same structure may also be used to construct decision directed filters. A large number of parameters allows
the extensive specification of the filter.

The feedforward section of the filter is implemented as an FIR direct form 2 filter. The correlation multipliers
are instantiated with the algorithmic multipliers, except in the case when only the sign of the decision is used
in the correlation, when a look up table is used. The parameters of the LPM are:

Parameter Description
 Range Action
LPM_TAPS 3 - 32 Number of Feedforward Taps
LPM_CENTER A, 1 A: Adaptive Center Tap

 1: Fixed at Unity
LPM_SIGIN Any Positive Integer Input Signal Precision
LPM_COEFF 3 - 32 Feedforward Weight

Precision
LPM_PREC Any Positive Integer Output Precision of Tap
LPM_ERRW Positive Integer,

<LPM_WIDTHO
Error between estimate and
nearest symbol

LPM_ERRSIG Positive Integer,
<LPM_SIGIN

Signal for Correlation

LPM_CONV Positive Real Number Inverse of Convergence
Constant

LPM_WIDTHO Positive Integer,
<(LPM_SIGIN +
LPM_COEFF +
ceil(log2LPM_TAPS) -1)

Precision of Estimate

Table 3: Parameters for LMS Adaptive Filter LPM

Although the filter built with this LPM follows a typical LMS filter topology, the calculation of the error, and
therefore the symbol estimation, is left to the user. This will allow the designer greater flexibility in the
specification of their design, as well as the ability to use the structure as a building block for more
complicated designs, such as a decision feedback equalizer.

92

Fig 1: Constructing a Decision Feedback Filter

In the above figure, two different LMS filters created using the LPM are used to construct a decision
feedback filter. The structure of the LMS filter is shown below, in figure 2:

Fig 2: Structure of LMS Filter

The convergence constant, µ, is implemented using one of two, and sometimes both, techniques. The
integrators are accumulators, that have far greater precision than the output precision of the correlation
multipliers and the feedforward weight precision (LPM_COEFF) combined. (The feedforward weights are
taken from the most significant bits of the accumulator, while the correlation results are fed into the least
significant bits of the accumulator.) The middle bits make up the bulk of the convergence multiplication,
which are chosen such that they are the inverse of the nearest fractional powers of two value greater than µ.
In the case where µ cannot exactly be expressed in this form, a constant multiplication (not shown in figure
2) is instantiated where the error signal enters the filter block. A very efficient constant multiplier LPM has
also been developed, which allows for constant multipliers to be automatically designed, which require far

93

less resources than the general multipliers described earlier.

As can be seen from figure 2, the source of the signal for the correlation section of the LMS filter will not
allow the LMS filter LPM to be used for a zero forcing algorithm, i.e. where one of the parameters for the
correlation are the decoded symbols.

3. Transversal Filters

An LPM was also designed for a subset of the LMS filter LPM, implementing only a transversal filter. This
filter can be used to build other structures that are currently not supported by the LPM, such as the zero
forcing algorithm. One feature of the transversal filter is that the coefficients are brought in from external
ports, so that any correlation algorithm may be applied. The parameters of this LPM follow closely to those
of the LMS filter. The structure created will be similar to the feedforward section of figure 2, except that a
separate port (for a total of LPM_TAPS ports) will be created for the tap coefficients.

Parameter Description
 Range Action
LPM_TAPS 3 - 32 Number of Feedforward Taps
LPM_CENTER A, 1 A: Multiplier at Center Tap

 1: Fixed at Unity
LPM_SIGIN Any Positive Integer Input Signal Precision
LPM_COEFF 3 - 32 Feedforward Weight

Precision
LPM_PREC Any Positive Integer Output Precision of Tap
LPM_WIDTHO Positive Integer,

<(LPM_SIGIN +
LPM_COEFF +
ceil(log2LPM_TAPS) -1)

Precision of Estimate

Table 4: Parameters for Transversal Filter LPM

4. LPM Implementation Examples

Several filters, transversal and adaptive, were specified and created with the respective LPMs. The
transversal filter examples show the resource savings, if a fixed, rather than adaptive, center tap is specified.
In the case of a pipelined system, the LPM will automatically insert the required number of delay stages
to synchronize the fixed (non-multiplicative) center tap value with the result of the other tap multipliers. The
size of the transversal filters is primarily determined by the number and size of the tap multipliers in it.
Another significant contribution to the size is by the adder tree that sums the outputs of all of the tap
multipliers.

Parameters Size
LPM_TAPS = 5, LPM_CENTER = A,
LPM_SIGIN = 8, LPM_COEFF = 8,
LPM_PREC = 11, LPM_WIDTHO = 14

777 LCs

LPM_TAPS = 5, LPM_CENTER = 1,
LPM_SIGIN = 8, LPM_COEFF = 8,
LPM_PREC = 11, LPM_WIDTHO = 14

676 LCs

Table 5: Transversal Filter Implementations

94

Parameters Size
LPM_TAPS = 5, LPM_CENTER = A,
LPM__SIGIN = 8, LPM_COEFF = 8,
LPM_PREC = 11, LPM_ERRW = 3,
LPM_SIGCOR = 4, LPM_WIDTHO = 12,
LPM_CONV = 24

1072 LCs

LPM_TAPS = 11, LPM_CENTER = A,
LPM__SIGIN = 10, LPM_COEFF = 12,
LPM_PREC = 20, LPM_ERRW = 4,
LPM_SIGCOR = 4, LPM_WIDTHO = 23,
LPM_CONV = 1

4079 LCs

Table 6: Adaptive Filter Implementation

The second adaptive filter example is very similar to the features of the 409AT 11-Tap Adaptive Equalizer
from AT&T. The main differences are that the LPM uses an FIR direct form 2 filter, rather than the direct
form 1 filter in the 409AT, and that the 409AT also supports the zero-forcing algorithm. The LPM version,
however, also supports pipelined multipliers, which can increase sampling rates dramatically. The
automated design capability, combined with the ease of reconfigurability of programmable logic, make it
possible to quickly design and implement many differing (or just tweaked versions of a design) filters during
the course of a design cycle.

The performance of the designs may be inferred from tables 1 and 2, which detail the performance of the
individual multipliers. In a pipelined filter, the adder tree following the tap multipliers is pipelined to the
same degree as the multipliers, and the system will run at the same rate. In the non-pipelined case, the
adder tree will add delay proportional to ceiling(log2(LPM_TAPS)), in the same way that the individual
multiplier delays are proportional to ceiling(log2(LPM_COEFFS)).

95

Conclusions

As design cycles shrink, and products increase in complexity, improved methods must be found to increase
productivity as well as quality. Using automated design tools makes it more feasible to quickly design, adapt,
and implement a solution, as well as reducing coding errors. System designers can now specify building
blocks that are tailored to their particular needs.

In this paper, automated design tools were presented that can be used for this new development environment.
Several examples have been shown that can equal standard products, as well as adapting them to changing
requirements.

References

1. Proakis, J.G. (1989). Digital Communications, 2d ed. McGraw Hill, New York.
2. Widrow, B. and Stearns, S.D. (1985). Adaptive Signal Processing, Prentice-Hall, New Jersey.
3. “409AT - Product Data Sheet”, AT&T Microelectronics.

96

XIII. Building FIR Filters in LUT-Based Programmable Logic

Caleb Crome, Applications Engineer

Martin S. Won, Applications Supervisor

Altera Corporation, 2610 Orchard Parkway
San Jose, CA

(408) 894-7000

Introduction

The finite impulse response (FIR) filter is used in many digital signal processing (DSP) systems to perform
signal preconditioning, anti-aliasing, band selection, decimation/interpolation, low-pass filtering, and video
convolution functions. Only a limited selection of off-the-shelf FIR filter components is available, and these
components often limit system performance. While it is possible to build custom devices that perform better
than off-the-shelf components, a custom solution requires more time and/or resources than are desirable for
many of today's design cycles. Therefore, there is a growing need among DSP designers for a high-
performance FIR filter implementation that can be built quickly to meet specific design needs.
Programmable logic devices (PLDs) are an ideal choice for fufilling this need.

Look-Up Table (LUT)-based PLDs are especially well-suited for implementing FIR filters. In the area of
speed, for example, a DSP microprocessor can implement an 8-tap FIR filter at 5 million samples per second
(MSPS), while an off-the-shelf FIR filter component can deliver 30 MSPS. In contrast, a LUT-based PLD
can implement the same filter at over 100 MSPS. PLDs implementing speed-critical FIR filter functions
can also increase the overall system performance by freeing the DSP processor to perform the lower-bit-rate,
algorithmically complex operations.

This article describes how to map the mathematical operations of the FIR filter into the LUT-based PLD
architecture and compares this implementation to a hard-wired design. Implementation details including
performance/device resource tradeoffs through serialization, pipelining, and precision are also discussed.

1. LUT-Based PLD Architecture

Before continuing, it may be helpful to review the concept of a LUT-based PLD. In most programmable
logic devices, there is a basic building block that is used to construct the complex logic functions required by
the device's user. In a LUT-based PLD, the combinatorial logic capability is provided by a look-up table,
which can perhaps best be thought of a small memory block. Figure 1 below shows a diagram of basic
building block for a LUT-based PLD from Altera, a FLEX 8000 device:

97

Figure 1 - FLEX 8000 LUT-based Building Block

The LUT in a FLEX 8000 device has four inputs and one output, which means that it can be programmed to
calculate any logic function of four inputs and one output. More complex logical functions can be built by
connecting the outputs of LUTs to the inputs of others. The designer using these devices has full control
over the size and nature of the logic function built with these building blocks. This capability is what
allows these types of devices to produce the variably-sized high-speed multipliers and adders needed to build
the FIR filters described in this article.

2. FIR Filter Architecture

Next, let's look at a conventional FIR filter design and why the design is so well-suited to LUT-based
programmable logic devices. Figure 2 shows a conventional 8-tap FIR filter design. This filter has eight 8-bit
registers arranged in a shift register configuration.

Figure 2 - Conventional 8-tap FIR filter design

98

The output of each register is called a tap and is represented by x(n), where n is the tap number. Each tap is
multiplied by a coefficient h(n) and then all the products are summed. The equation for this filter is:

For a linear phase response FIR filter, the coefficients are symmetric around the center values. This
symmetry allows the symmetric taps to be added together before they are multiplied by the coefficients. See
Figure 3. Taking advantage of the symmetry lowers the number of multiplies from eight to four, which
reduces the circuitry required to implement the filter.

Figure 3 - Adding Taps Before Multiplication

The equation for the vector multiplier is:

y = [s(1) h(1)] + [s(2) h(2)] + [s(3) h(3)] + [s(4) h(4)]

The multiplication and addition in the equation above can be performed in parallel using LUTs. Suppose
that the coefficients and sums of the taps have the following two-bit values (two-bit values are used for

99

simplicity; the concept can be extended to larger bit widths):

h(1) = 01, h(2) = 11, h(3) = 10, h(4) = 11

s(1) = 11, s(2) = 00, s(3) = 10, s(4) = 01

The multiplication and addition for the vector multiplier are shown below:

Multiplicand h(n) = 01 11 10 11
Multiplier s(n) = 11 00 10 01

Partial Product P1(n) = 01 00 00 11 = 100

Partial Product P2(n) = 01 00 10 00 = 011
__

Sum = 011 000 100 011 = 1010

In the multiplication above, the four digits shown in bold text are the LSBs of each s(n), and are represented
by s(n)1 . Each partial product P1(n)— in italics—is either 00 or the corresponding value of the
multiplicand’s h(n). The sum of all partial products P1(n) is P1 (in this case 100). Because s(n)1 for the 4
multipliers uniquely determines the value for P1, there are only 16 possible values for P1. The table below
lists all possible values for P1 based on s(n)1:

Value of Each Partial Product (P1) for LSB value s(n)1

s(n)1 P1 Result

0000 0 00 + 00 + 00 + 00 = 0000
0001 h(1) 00 + 00 + 00 + 01 = 0001
0010 h(2) 00 + 00 + 11 + 00 = 0011
0011 h(2) + h(1) 00 + 00 + 11 + 01 = 0100
0100 h(3) 00 + 10 + 00 + 00 = 0010
0101 h(3) + h(1) 00 + 10 + 00 + 01 = 0011
0110 h(3) + h(2) 00 + 10 + 11 + 00 = 0101
0111 h(3) + h(2) + h(1) 00 + 10 + 11 + 01 = 0110
1000 h(4) 11 + 00 + 00 + 00 = 0011
1001 h(4) + h(1) 11 + 00 + 00 + 01 = 0100
1010 h(4) + h(2) 11 + 00 + 11 + 00 = 0110
1011 h(4) + h(2) + h(1) 11 + 00 + 11 + 01 = 0111
1100 h(4) + h(3) 11 + 10 + 00 + 00 = 0101
1101 h(4) + h(3) + h(1) 11 + 10 + 00 + 01 = 0110
1110 h(4) + h(3) + h(2) 11 + 10 + 11 + 00 = 1000
1111 h(4) + h(3) + h(2) + h(1) 11 + 10 + 11 + 01 = 1001

The partial product P2 can be calculated in the same manner, except the result must be shifted left by one bit
(or multiplied by two in the binary domain) before adding P1 and P2. In this example, the result is four bits
wide. Therefore, the adders must be four bits wide.

The partial products (P1 and P2) can be calculated by eight 4-input LUTs. All computations occur in parallel.
The partial products can be fed into a tree of adders to calculate the final product called y(n) as shown in
Figure 4.

100

Figure 4 - Calculating the Final Product

Only one adder is used in Figure 4 because the function has only two bits of precision. If more bits of
precision are used, additional adders are required. For example, in an 8-tap FIR filter requiring 7-bit inputs,
eight 16 X 4 LUTs would be required, as shown in Figure 5.

101

Figure 5 - Higher Precision Requires More Adders

3. Parallel FIR Filter Performance

PLDs generally have a performance advantage over DSP processors when implementing FIR filters because
the arithmetic functions can be performed in parallel in a PLD. LUT-based PLDs are especially useful in
this area since they tend to offer better arithmetic performance than non-LUT-based PLDs. The table below
shows the performance (in megasamples per second) of FIR filters with varying numbers of taps when
implemented in a specific LUT-based PLD (an Altera FLEX 8000 device, the EPF81188A-2):

Input Width Taps Coefficient Width Output Width Performance (MSPS)
8 8 8 17 101
8 16 8 10 101
8 24 8 10 100
8 32 8 10 101

102

4. Serial FIR Filters

So far, we have discussed fully parallel filters (in which as many arithmetic operations are performed in
parallel as possible). It is also possible to introduce serial arithmetic operation into a LUT-based PLD filter.
The general tradeoff involved in introducing serialization is a reduction in the amount of device resources
required to build the filter, and a corresponding reduction in the performance of the filter.

Figure 6 shows a fully serial FIR filter. This architecture is similar to the fully parallel FIR filter in that it
uses the LUT to store the precomputed partial products P1, P2 ... Pn, where n = <data width> + 1. The serial
filter in Figure 5 performs the same computation as the parallel filter, but it only processes one bit of the
input data at a time. The serial filter first computes P1, which is a function of the four bits s(1)1 through s(4)1 .
On each successive cycle the serial filter computes the next partial product Pn from inputs s(1)n through
s(4)n . The partial products are summed in the scaling accumulator, which divides the previous result by 2
during each clock cycle (it shifts the previous data right by one bit). This produces a final product after <data
width> + 1 clock cycles because when the data passes though the symmetric tap adders (at the top of Figure
5) the data is <data width> + 1 bits wide (the fully parallel version has <data width> + 1 LUTs for the same
reason). The serial FIR filter reuses the same LUT, rather than using extra circuitry.

103

Figure 6- Fully Serial FIR Filter

Because the serial filter contains one LUT, it can contain only one set of data. Therefore, the accumulator
must perform a subtraction when calculating the MSB of the data, which means the accumulator must have
an add or subtract control (the add_sub port). The control block deasserts the add_sub signal when the filter
computes the MSB.

5. Serial Filter Performance and Resource Utilization

As mentioned previously, serial implementations of FIR filters in LUT-based PLDs generally trade off
performance for better resource utilization. The reason is that fewer LUTs are required for serial filters, but
more clock cycles are necessary to generate the final result. For some specific numbers, we have
implemented 8-bit, 16-tap FIR filters of each type in two LUT-based PLDs (Altera FLEX 8000 devices of
the same speed grade). The results are shown below:

104

 Utilization Clock Rate Clock Cycles
Filter Type (# Logic Cells) Device (MHz) per Result MSPS MIPS

Parallel 468 EPF8820A 101 1 101 1,616
Serial 272 EPF8452A 63 9 7 112

6. Pipelining

Pipelining allows the filter to be clocked at a greater rate with a corresponding increase in latency. There
may also be an increase in device utilization, although in most LUT-based PLDs this will not be the case.
For example, in the Altera FLEX architecture there is a flipflop in each logic cell. Therefore, an adder and a
register require only one logic cell per bit. If the width of s(n) is not a power of two, extra pipeline registers
are required to maintain synchronization. Figure 7 shows both a pipelined and a non-pipelined parallel
filter.

Figure 7 - Pipelined vs. Non-Pipelined Parallel Filter

7. FIR Filter Precision (Input Bit Width and Number of Taps)

Adding bits of input precision requires additional LUTs in parallel FIR filters and an additional clock cycles
in serial FIR filters (one more per bit). Adding taps to either the parallel or serial FIR filter designs
described in this paper does not significantly impair their performance. For example, in an Altera FLEX

105

8000A-2 device, a pipelined 32-tap parallel FIR filter performs at the same speed as an 8-tap parallel FIR
filter: 101 MSPS.

8. LUT-Based PLDs as DSP Coprocessors

In any given DSP product that utilizes a DSP processor, FIR filters (and other DSP functions) can occupy
large amounts of that processor's bandwidth. In many cases, it may be desirable to offload these processor-
intensive functions onto less-flexible devices that are dedicated to performing them in high-speed parallel
operation. LUT-based PLDs are ideal for this purpose, as the data in this article shows. In addition to
implementing FIR filters, LUT-based PLDs are capable of performing any arithmetic functions that involve
additive and/or multiplicative-type operations, which encompasses the majority of DSP functions.
Additionally, most LUT-based PLDs are also reconfigurable in-system, which means that a single PLD can
implement many DSP coprocessor functions during operation, depending on the needs of the system.
Taken together, these facts clearly indicate the advantage provided by LUT-based programmable logic
devices to the DSP designer.

106

XIV. Automated FFT Processor Design

Martin Langhammer

Kaytronics, Inc, 405 Britannia Rd. E. #206
Mississauga, Ontario, Canada

Caleb Crome

Altera Corporation., 2610 Orchard Park
San Jose, California

Abstract

Presently, FFTs (Fast Fourier Transforms) may be implemented in software, using DSPs (Digital Signal
Processors) or microprocessors, or for higher performance, in application specific devices, or in custom
VLSI designs. In the latter case, cost, design risk, and design time, are all significant issues. This paper will
describe a design tool that automatically generates an FFT processor for programmable logic implementation.
FFT processor design methodologies, and applications, will also be discussed.

1. INTRODUCTION

The FFT has many applications in signal processing, such as signal analysis, which may be found in test
equipment, or radar installations. Recently, modulation schemes such as OFDM (Orthogonal Frequency
Division Multiplexing), have made the FFT valuable for communications as well. Often, software
implementations of FFTs are lacking in performance, necessitating an application specific, or custom VLSI
device, to achieve the required performance. The price and inflexibility of application specific devices, and
the risk, in terms of both time to market and successful design, of custom devices, have made their system
cost prohibitive in many instances.

This paper presents a new approach to high performance FFT design. An automated design tool, that
generates both the hardware and software for an FFT processor, was developed for programmable logic. The
processor uses multiple parallel ALUs (arithmetic logic units), and optimized datapaths and control logic, to
achieve FFT throughput, of an order of magnitude greater than generic DSPs, and on par with application
specific devices. The use of programmable logic effectively eliminates the risk of design mis-specification,
and the design tool makes design spins almost instantaneous.

The FFT processor may be described by only 4 parameters. Optimal design, and device fitting are
accomplished by the tool. A MATLAB interface to the hardware design environment is provided to quickly
generate and analyze test vectors, and to compare fixed and floating point simulations.

2. FFT DESIGN

The 1-D DFT (Discrete Fourier Transform) for a discrete time signal, x(n), is defined as:

X k x n WN
nk

n

N

() ()=
=

−

∑
0

1

 (1)

where

W eN
nk

j
N

nk
=

− 2π

 (2)

107

The signal x(n) is complex.

The DFT may be decomposed into even and odd sequences, to develop the DIF (Decimation In Frequency)
form of the FFT. The even bins are then given by:

X k x n x n N W
n

N

N
nk() () ()2

20

2
1

2

= + +

=

−

∑ (3)

and the odd bins by:

X k x n x n N W
n

N

N
k n() () () ()2 1

20

2
1

2

1+ = − +

=

−

−∑ (4)

This process can be repeated until N = 2, where X(0) = x(0) + x(1), X(1) = x(0) - x(1).

3. FFT PARAMETERS

The FFT processor is described completely by 4, with an optional 5th, parameter.

PARAMETER RANGE DESCRIPTION
FFT_LENGTH Any Power of 2 Length of FFT (Complex Points)
DATA_WIDTH Any Positive Number Input and Output Precision
TWIDDLE_WIDTH Any Positive Number Twiddle Precision
MEMORY_ARCH 1, 2, 4 Number of Data Banks
SUB_BINS (Optional) Any Number or Range, 0 to

FFT_LENGTH
Defines Set of Output Bins
(<
FFT_LENGTH)

TABLE I: FFT MACRO PARAMETERS

The FFT length may be any power of two. Data and twiddle widths may be described independently. The
MEMORY_ARCH parameter defines the number of separate data memory banks (the twiddle memory is
automatically constructed by the tool) which is in direct proportion to the processor throughput.

The SUB_BINS parameter is optional, and can be used when not all of the output bins are required. This
may decrease the time the processor requires to compute the FFT, but may also increase the size of the
processor.

4. FFT PROCESSOR ARCHITECTURE

The core consists of a radix 2, DIF engine, with Block Floating Point representation, which is applied once
per pass during the log2(FFT_LENGTH) passes. The Block Floating Point section looks right four positions,
which is greater than the maximum word growth per section; therefore incoming data may be scaled
automatically to take advantage of the full precision offered by the processor.

 A. Processor Core

108

The core takes advantage of a new, efficient multiplier architecture developed for programmable logic, which
is available in MAXPLUS2 V6.2 and later, from Altera Corporation. The multipliers are fully
parameterizable, and offer high performance with relatively modest resource requirements. Multiplier
throughput, in Altera 10K-3 CPLDs ranges from 125 MHz, for 8x8 multipliers, to 79 MHz, for 16x16
multipliers.

FIGURE I: FFT PROCESSOR ARCHITECTURE

B. Data RAM Banks

The Data RAM may be internal or external to the
programmable logic device. The number of datapaths for
the FFT data will be dependent on the number of Data
RAM banks.

C. Control Machine and Programming

For all bins out processing, a hardwired control is used
for the FFT processor. The algorithm for generating the
hardwired control machine takes advantage of the
scaleable nature of the DIF FFT, and as a result, has a

relatively constant size, largely independent of the FFT_LENGTH parameter. This allows the user to specify
a wide range of FFT lengths, with similar part utilization’s, and predictable system performance.

In the case of a single memory bank, the FFT style is in-place, but constant geometry addressing is used
when 2 or 4 memory banks are available.

For Sub Bin processing, a microprogrammed controller is implemented, with the program flow stored in an
EAB (embedded array block), on chip.

5. FFT IMPLEMENTATION

The FFT processor was optimized for use with Altera 10K programmable logic devices, which contain EABs,
which may be configured as 256x8 synchronous RAM blocks. Depending on data widths, and memory
architecture desired, FFTs in the range of 256 to 512 points, can be implemented with on board memory
resources.

Tables II and III show resource and memory requirements for FFTs utilizing internal, and external memory,
respectively.

Length Precision Memory Size Performance
512 16 / 8 Single 2000 LCs 186 us
512 8 / 8 Dual 1150 LCs 94 us
512 12 / 12 Dual 1970 LCs 94 us
512 16 / 16 Single 2993 LCs 190 us

TABLE II: FFT PROCESSORS (INTERNAL RAM)

109

Length Precision Memory Size Performance
1024 16/16 Single 2993 LCs 411 us
1024 16/16 Dual 2993 LCs 207 us
32768 16/16 Dual 3100 LCs 9.8 ms

TABLE III: FFT PROCESSORS (EXTERNAL RAM) - PRELIMINARY

6. FFT DESIGN CONSIDERATIONS

Many approaches to the design of the FFT processor tool were considered, before settling on the current
architecture.

6.1 Prime FFT Decomposition

At first glance, a relatively prime radix decomposition of the FFT would be easily mapped to programmable
logic, as the matrix multiplications required for short prime DFTs could easily be decoded into the LUTs
(look up tables), such as used by fixed coefficient FIR filters. This was found to be impractical for a
monolithic FFT processor solution. A library of DFTs would be required, all existing on the chip at the same
time. In addition, a generic butterfly core would still be needed, when the FFT could no longer be
decomposed into relatively prime sub-sections. The synchronization of the differing latencies of the DFTs
and smaller FFTs would not allow a hardwired control machine, making the size of the FFT processor
unpredictable.

This method of decomposition still may be used for high performance FFT systems, using multiple FFT
processors, as discussed in section VIII.

6.2 CORDIC FFT Core

The CORDIC (COordinate Rotation DIgital Computer) method of complex rotations can also be used to
calculate the DFT, as discussed in [4], [5], and [6].

The i-th iteration of the CORDIC algorithm is defined as:

xr xr xii i i i i+ = +1 ∂ θ (5)

for the real value, and for the imaginary value:

xi xi xri i i i i+ = +1 ∂ θ (6)

The ∂ i term is either +1, or -1, and the θ i term is a 2-i scaling factor.

The CORDIC method, however, exhibits some drawbacks, such as a scaling (approximately 1.6 for useful
FFT precisions), which must be accounted for. As the CORDIC algorithm is sequential in nature, with each
iteration of the real and imaginary calculation - depending on the previous imaginary and real iteration -
respectively, the latency through a CORDIC processor will grow linearly with increasing bit width. In
addition, this will not allow efficient pruning of the output bits, as the entire precision must be kept
throughout the computation, to allow the contribution of each iteration to ripple through the next stage of the
algorithm.

A common misconception [6] regarding programmable logic is that multipliers cannot be efficiently
implemented, and the CORDIC processor will be significantly smaller.

110

During the design of the FFT processor presented here, a parallel (one complex result per clock) CORDIC
core was implemented in the Altera 10K CPLDs. To achieve a throughput on the same order as the parallel
multipliers, the extra delay stage that was required to match the (possible) negation in the second term of
each iteration, caused the CORDIC core to be as large as the parallel complex multiplier.

6.3 Higher Radix

By decomposing the DFT into a larger number of sequences, a higher radix FFT may be developed. It
has been shown that a higher radix FFTs require fewer complex multiplications. [1]

This can be verified by inspection of a DFT matrix, where the first column contains no multiplies. For a
radix R, FFT, each butterfly will require R-1 complex multiplies, which will approach unity as a ratio of total
operations in the butterfly, as R increases. The number of stages, however, at logR(FFT_LENGTH),
decreases with increasing R, so that the overall number of complex operations is less.

The structure of a higher radix core becomes more complex with larger R, as well. A complex twiddle must
still be performed for R-1 of the butterfly results, requiring R-1 twiddle sections to take advantage of the full
bandwidth available through the DFT core. This would grow prohibitively large very quickly.

Higher radix FFTs are also less flexible in possible choices of FFT length, which must be in powers of R
only.

7. IFFT PROCESSING

The IFFT may be easily derived from the FFT. As the FFT processor is implemented in programmable logic,
the user may easily add the required logic to accomplish both functions in one device.

The FFT is closely related to the IFFT:

X k x n W x k
N

X n W
n

N

N
nk

n

N

N
nk() () () ()= ⇔ =

=

−

=

−
−∑ ∑

0

1

0

11
 (7)

The scaling of the IFFT, for a radix 2 system can be easily done by a right shift. The change in sign of the
exponent, can most easily be achieved by the swapping of the real and imaginary components for both the
frequency and time samples. The IFFT function can therefore be added to the FFT processor with two sets of
muxes.

8. HIGHER PERFORMANCE FFTs

The prime decomposition of FFTs can be used to create a higher performance FFT system, using multiple
smaller FFTs and DFTs in parallel. The derivation of the FFT from the DFT is accomplished by matrix
decomposition of the DFT. In the more general case, matrix decomposition of the FFT can be defined using
index maps for the time and frequency indexes.

The time index map is:

n K n K n= +()1 1 2 2 (8)

and the frequency index map:

111

k K k K k= +()3 1 4 2 (9)

Substituting into the definition of the DFT (1), this gives:

()

X K k K k

x Kn K n W W W W
n

N

n

N

N
K K nk

N
K K n k

N
K K nk

N
K K n k

()3 1 4 2

0

1

0

1

1 1 2 2
2

2

1

1
1 3 1 2 2 3 2 1 1 4 1 2 2 4 2 2

+ =

+
=

−

=

−

∑ ∑

(10)

When N=N1N2, with K1=N2, K4=N1, and K2,K3 = 1, this reduces to:

X k N k x N n n W W W
n

N

n

N

N
n k

N
n k

N
n k() ()1 1 2

0

1

0

1

2 1 2
2

2

1

1

1

1 1 2 1

2

2 2+ = +
=

−

=

−

∑ ∑ (11)

which in turn describes the derivation of the radix 2 FFT, when N2 or N1 = 2.

This result can be used to speed up an FFT system. In the case of length 2 DFTs, the DFTs can be used on the
time domain samples (spaced at N/2), the twiddle factor WN

n k2 1 applied, and then two separate N/2 FFTs
applied to the upper and lower butterfly result vectors. Note that for this system speed of 2, more than twice
the hardware was required. This is to be expected, as the complexity of the FFT varies as N logRadixN.

This same technique can be used for any composite valued FFT system, such as a 4 length DFT by radix 2
FFTs.

In certain cases, where the time and frequency maps are both modulo N, as well as being modulo 0 of each
other, and providing a one to one mapping between themselves, the middle twiddle term in (11) will reduce
to unity. This will only occur if the decomposition of the FFT system is into a number of matrixes which
are relatively prime to, i.e. share no common factors with, the dimensions of those matrixes. One of the
difficult aspects of dealing with this decomposition is finding a valid relatively prime system, and then
unscrambling the frequency bins after the FFT computation has finished.

112

CONCLUSIONS

A solution for the automated design of a high performance FFT processor was presented. Fully
parameterizable, this tool will allow systems designers to more easily integrate FFT functions into their
projects. A variety of processor performance levels may be selected, and several techniques to greatly
increase the overall throughput of an FFT system, by using multiple FFT processors in parallel, were also
discussed.

The radix 2 approach to FFT processor was decided on after careful evaluation of many techniques. The
flexibility of this method, coupled with the further possibilities of FFT system design presented, will enable
the application of the FFT to a wide variety of signal processing systems.

REFERENCES

1. Rabiner, L.R. and Gold, B. (1975). Theory and Application of Digital Signal Processing, Prentice Hall,

New Jersey.
2. Peled, A. and Bede, L. (1976). Digital Signal Processing, Robert E. Krieger Pub. Co. (reprint)
3. Langhammer, M. “DSP Implementation in Programmable Logic”, in Proceedings of the IEEE ASIC

Conference, in press.
4. Despain, A.M., “Very Fast Fourier Transform Algorithms Hardware for Implementation”, IEEE

Transactions on Computers, vol. C-28, May 1979.
5. Jones, K.J., “Bit Serial CORDIC DFT Computation with Multidimensional Systolic Processor Arrays”,

IEEE Journal of Oceanic Engineering, vol. 18, October 1993
6. Dick, C., “Computing the Discrete Fourier Transform on FPGA Based Systolic Arrays”, Proceedings of

FPGA ‘96
7. Altera Corporation, FLEX 10K - Embedded Programmable Logic Family - Data Sheet, 1995.

113

XV. Implementing an ATM Switch Using Megafunctions Optimized

for Programmable Logic

Bill Banzhof
Member of the Technical Staff

Logic Innovations
and

David Greenfield
Marketing Manager, Target Applications

Altera Corporation

Efficient use of megafunctions -- pre-created designs that are easily integrated into a system-level chip --
enables system designers to focus resources on developing system features that provide competitive
differentiation. ASICs can be prototyped in programmable logic get the product debug cycle started sooner
and enable product modifications to be implemented more easily. Dropping megafunctions into
programmable logic devices (PLDs) accelerates the design cycle because designers do not spend time and
resources developing these reusable blocks. These time-saving advantages are particularly important when
working with complex designs.

An ATM switch design provides a useful example of how the design process is enhanced using
megafunctions and PLDs. Purchasing off-the-shelf megafunctions reduces time spent on designing the
switch fabric and enables switch software debug to occur earlier in the design cycle. For instance, critical
design elements such as operating in multicast mode, optimizing the Available Bit Rate (ABR) data path, and
enhancing the system prioritization scheme are all included in the ATM layer megafunction.

Megafunction implementation can eliminate 1000 hours from the design cycle as indicated in Figure 1 &
Table 1, which compares a traditional ASIC ATM design flow with a megafunction programmable logic
design flow. These megafunctions also optimize performance because data transfer rates are tested and
verified to ensure the switch operates as specified. In addition, the PLD implementation reduces the risk of
ASIC prototype failure by enabling rapid design and system level testing. This flow still allows for future
cost reduction through an ASIC migration path.

1. ATM Background

Figure 2 provides details on the five basic ATM switch functions.
In the physical medium dependent layer, circuitry converts weak analog signals in twisted pair wire or fiber
optic cable into digital signals. Clock recovery circuits like phase-locked-loops and analog buffering
generally comprise this layer.

The transmission convergence layer, in receive mode, builds ATM cells from the raw data presented by the
physical medium dependent layer. When transmitting, the ATM cells are converted into data streams
formatted to drive the physical medium dependent layer. The call sequencing and rate coupling functions
are also performed in this layer.
The ATM layer is responsible for switching decisions, for updating the ATM cell header, and for providing
cell sequencing and rate coupling to interface with the communications bus.

The protocol microcontroller orchestrates power-on-initialization, ATM connection protocols, and permanent
virtual channels. Since no “real time” data flows through this microcontroller, the performance level
requirement is minimal. Management information block- counters, which keep track of the number of cells
received, transmitted and mis-routed, are positioned throughout the switch. This information enables the

114

network administrator to review the status the various ports on the switch.

Standard ASIC Design Flow for ATM System - 1480 Hours

 80 Hours 960 Hours 160 Hours 120 Hours 160 Hours

Megafunction/Programmable Logic Design Flow for ATM System- 400 Hours

 80 Hours 80 Hours 160 Hours 80 Hours

Figure 1: Design Cycle Benefits with Megafunctions

 ATM Design Elements Comments Engineering time estimate

1 Transmission Convergence
Layer HDL design and
simulation

Includes the HDL design/simulation of
Transmission Convergence Layer models

240 Design Hours

2 ATM Layer HDL design and
simulation

Includes the HDL design/simulation of the
ATM layer models

320 Design Hours

3 ATM cell data flow -
Physical layer to
communications bus

Includes design/simulation of the ATM
cell flow between physical layers and
communications bus

120 Design Hours

4 Pre-defining the
communications bus

Includes architecting, designing, and
simulating bus

120 Design Hours

5 VPI and VPI/VCI cell
address translation

Includes architecting, designing, and
simulating algorithm

120 Design Hours

6 Characterization of switch
performance

ATM switch must sustain data transfer at
each ports rated capacity. Functionality is
hard to prove in board simulations; lab
switch testing verifies ATM cell through-
put.

160 Hours lab testing using
ATM switch prototype

Table 1: ATM Design Elements Included with Megafunctions

Architect
System

System
Design (1-5)

Architect
System

Integrate
Megafunctions

Test Vector Generation/
Vendor Interface

Prototype/
Debug

Customize
Design

Prototype/
Debug/

Wait for ASIC

Test/
Characterization (6)

Future Cost Reduction/
ASIC Migration

115

MEDIUM

PHYSICAL
MEDIUM

DEPENDENT
LAYER

TRANSMISSION CONVERGENCE LAYER

-HEC GENERATION AND VERIFICATION
-CELL DELINEATION
-CELL SEQUENCING AND RATE COUPLING
-CELL GENERATION AND RECOVERY

ATM LAYER
-CELL VPI and VCI TRANSLATION
-CELL HEADER GENERATION AND
EXTRACTIION
-CELL SEQUENCING AND RATE COUPLING

OPTIONAL STATIC
RAM

VPI / VCI
TRANSLATION

TABLES

BUS INTERFACE
TRANSCIEVERS

MEDIUM

PHYSICAL
MEDIUM

DEPENDENT
LAYER

TRANSMISSION CONVERGENCE LAYER
-HEC GENERATION AND VERIFICATION
-CELL DELINEATION
-CELL SEQUENCING AND RATE COUPLING
-CELL GENERATION AND RECOVERY

ATM LAYER
-CELL VPI and VCI TRANSLATION
-CELL HEADER GENERATION AND
EXTRACTIION
-CELL SEQUENCING AND RATE COUPLING

OPTIONAL STATIC
RAM

VPI / VCI
TRANSLATION

TABLES

BUS
INTERFACE

TRANSCIEVERS

TRANSMISSION CONVERGENCE LAYER
-CELL SEQUENCING AND RATE COUPLING
-CELL GENERATION AND RECOVERY

ATM LAYER
-CELL VPI and VCI TRANSLATION
-CELL HEADER GENERATION AND
EXTRACTIION
-CELL SEQUENCING AND RATE COUPLING

OPTIONAL
STATIC RAM

VPI / VCI
TRANSLATION

TABLES

ATM UTOPIA
INTERFACE

-UTOPIA I/O
-CELL SEQUENCING AND RATE COUPLING

BUS INTERFACE
TRANSCIEVERS

UTOPIA I/O

SWITCH FABRIC

MEGAFUNCTIONS

Personal Computer
Workstation

COMMUNICATIONS BUS

Protocol
Microcontrolle

r

Figure 2: The ATM Switch

116

2. ATM Megafunction Blocks

Megafunctions can be used effectively when designing the transmission convergence and ATM layers
because these blocks are becoming industry standard functions.

The transmission convergence layer megafunctions implement serial cell inlet blocks, including ATM cell
delineation and header error checking (HEC), and serial-to-parallel conversion. ATM cell delineation is
performed by sampling the serial bit stream, calculating a header check sequence, and then comparing the
calculated check bits against the received data. When a match is detected, the cell boundary in the serial data
stream can be determined.

Parallel cell inlet blocks allow the switch core logic to connect to industry standard physical layer devices
using the universal test and operations physical interface (UTOPIA) interface. Binary counters include a
cell header bit counter, a byte counter, and a 53-byte ATM cell counter. Other megafunction elements
include the cell acceptance state machine, the cell inlet and outlet FIFOs, and serial ATM cell outlet blocks
encompassing HEC field generation and parallel-to-serial conversion. The parallel ATM cell outlet
blocks, which feed physical layer (PHY) devices over the UTOPIA interface, and management information
block counters, are also included in the transmission convergence layer megafunction.

In the ATM layer, megafunction elements include ATM cell virtual path indicator (VPI) and virtual channel
indicator (VCI) address-translation-logic, and the VPI and VPI/VCI address-jamming-multiplexor. A
communications bus interface -- which acts like a small but very fast local area network -- is needed along
with adjacent communications bus inlet and outlet FIFOs. Additional blocks include the constant bit rate
(CBR), variable bit rate (VBR), and available bit rate (ABR) data paths and priority logic.

3. Utilization of Embedded Array Blocks

ATM megafunctions require efficient memory for optimized performance. One means of implementing the
memory is the dedicated embedded array block (EAB) structure of Altera’s FLEX 10K architecture. Each
EAB provides 2,048 bits which can be used to create RAM, ROM, FIFO functions or dual-port RAM.
Maximizing the use of these EABs frees traditional logic elements, such as look-up tables (LUTs), registers,
and routing resources, for non-memory logic. Access to the memory is supported in HDLs through the use
of industry standard constructs like LPM and via Altera provided memory compilers for tools that do not
support LPM. Sequencers can then be designed to handle complex tasks by combining the EAB with
traditional logic elements.

One EAB function is the storage of ATM cells between the PHY layer devices and the ATM layer logic, and
between the ATM layer logic and the switch fabric. The EAB also provides the address space for
implementing the VPI and VCI cell address translation. The EAB also is used ito provide limited address
translation memory space in certain switch applications. This eliminates the additional cost and board
space associated with adding external SRAM.

Another application of the EAB is in the command and status coupling between the external protocol
microcontroller and the command/status engine residing in the PLD. The EAB is used as a buffer, allowing
the generation and execution of command and status packets to be performed independently of the data
transfer of the packets.

The command EAB is used as storage for the microcontroller as it assembles command packets. When
assembled, a signal is sent to the command/status engine in the PLD indicating that a command is ready to
be parsed. The microcontroller is then free to perform other processing tasks while the command/status
engine is executing the command. In the reverse path, the microcontroller is not interrupted until a
complete status packet has been assembled and is ready for transmission out of the status EAB.

117

4. Logic Cell Usage

The large number of megafunctions needed for an ATM switch require the highest density PLDs. The ATM
switch logic size is shown in Table 2. PLDs must also include resources beyond megafunction
implementation to enable customization and integration of additional ATM features.

Function/Device Logic Cells Memory Bits/EABs
Transmission Convergence Layer 768 8,000/4
ATM Layer 987 12,000/6
ATM Switch - One port 1755 20,000/10

Table 2: Logic Cell Usage

5. Applications

Megafunction design methodology gives designers the option of placing optimized netlists into any standard
design environment or taking Verilog or VHDL source code and changing the design to add features in the
function. Either alternative enables designers to add features to customize these functions for specific
applications.

For example, cable set-top designers might add a quad phase shift keying (QPSK) upstream modem and a
quadrature amplitude modulated data (QAM) downstream modem to one ATM switch port. In this
configuration, a PC with an ATM-25 network interface card is connected to another port of the ATM switch.
The design then acts like a network-to-network switch, connecting a home owner’s PC to the cable
company’s head-end equipment.

Network interface card designers might combine the transmission convergence layer and ATM layer
megafunctions with segmentation and re-assembly logic to form a cost effective ATM network interface card.

High-density PLDs that provide 50,000 to 100,000 gates provide a prototyping and early production vehicle
for system design engineers that reduces risk and brings distinct time-to-market advantages. These devices
can be used for initial production while an ASIC is being developed and provide a path to a masked solution.
PLD designs are quickly and easily modified during design debug and enable multiple design iterations per
day, which cuts significant time from a system development cycle. Overall, leveraging PLD’s traditional
strengths with optimized ATM megafunctions not only frees designers to focus on adding value to their
products, but helps them get competitive devices to market sooner.

118

XVI. Incorporating Phase-Locked Loop Technology into

Programmable Logic Devices

Greg Steinke
Supervisor-Component Applications

Altera Corporation, 101 Innovation Drive
San Jose, CA 95134

As higher density programmable logic devices (PLDs) become available, on-chip clock distribution becomes
more important to the integrity and performance of the designs implemented in these devices. The impact
of clock skew and delay becomes substantial in high density PLDs, exactly as in gate array and custom chip
implementations. Existing solutions for this problem, such as hardwired clock trees, are less effective for
the high density PLDs that are being released in today’s programmable logic market. One recent solution to
this problem is the incorporation of phase-locked loop (PLL) structures into the PLDs themselves. The
PLL can then be used along with a balanced clock tree to minimize skew and delay across the device.

An additional benefit of a PLL is the ability to multiply the incoming device clock. Gate array and custom
chip designers have found clock multiplication very useful in their designs; a common example is in
microprocessors where a 100-MHz processor may be fed by a 50-MHz clock, which is doubled in the
processor. This technique allows easier board design, as the clock path on the board does not have to
distribute a high-speed signal.

This paper describes how to use an on-board PLL to perform these functions in Altera’s FLEX 10K and
MAX 7000S devices. Specific design examples of how to reduce clock skew and perform clock
multiplication are given, including schematics, VHDL and Verilog. Other considerations, such as timing
and board layout considerations are also addressed.

1. ClockLock and ClockBoost Features in FLEX 10K and MAX 7000S

Selected devices in the FLEX 10K and MAX 7000S device families include ClockLock and ClockBoost
circuits. The devices which include ClockLock and ClockBoost are denoted with a ‘DX’ suffix in the
ordering code. For instance, the EPF10K100GC503-3 does not have ClockLock circuitry, but the
EPF10K100GC503-3DX does. The ClockLock and ClockBoost circuits are designed differently in the
FLEX 10K and MAX 7000S families.
In the FLEX 10K device family, the ClockLock circuit locks onto the incoming clock, minimizing clock
delay. The ClockBoost circuit can be engaged to multiply the incoming clock by two. Whether or not the
clock is multiplied, the clock delay is reduced, improving clock-to-output and setup times. In the MAX
7000S device family, the clock delay is already quite low. Therefore, the ClockLock circuitry does not
further reduce clock delays. The advantage of the ClockLock circuit in MAX 7000S is the ClockBoost
circuit; in MAX 7000S, the ClockBoost circuit is always engaged when ClockLock is used. The ClockBoost
circuit can multiply the incoming clock by two, three, or four in MAX 7000S devices.

2. Specifying ClockLock and ClockBoost Usage in MAX+PLUS II

Altera has added a new primitive to its programmable logic development system, MAX+PLUS II, to let
designers take advantage of ClockLock and ClockBoost. By using the primitive CLKLOCK, a designer
notifies MAX+PLUS II that the ClockLock circuitry should be used on this clock path. This is analogous to
the GLOBAL primitive already used within MAX+PLUS II to tell MAX+PLUS II to use the dedicated

119

global clock path.

The CLKLOCK primitive is parameterized to allow the user to specify the operating conditions. There are
two parameters associated with the CLKLOCK primitive: INPUT_FREQUENCY and CLOCKBOOST.
The INPUT_FREQUENCY parameter tells MAX+PLUS II at what frequency this circuit will be clocked.
Based on the INPUT_FREQUENCY parameter, MAX+PLUS II sets RAM bits in the configuration
bitstream that tune the PLL in the ClockLock circuit to respond to the appropriate frequency. If the circuit is
then clocked at a different frequency, the ClockLock circuit may not meet its specifications, or may not
function correctly. The CLOCKBOOST parameter sets the clock multiplication factor. Depending on the
device chosen, the CLOCKBOOST parameter can be set to 1, 2, 3, or 4. For instance, if CLOCKBOOST is
set to 2, then the incoming clock will be multiplied by two. The CLKLOCK primitive can be used in
MAX+PLUS II schematic designs, AHDL designs, or in a third-party tool. When creating a schematic design,
the engineer will use the CLKLOCK symbol provided in MAX+PLUS II. Figure 1 shows an example of a
schematic instantiation of the CLKLOCK symbol.

Figure 1. Schematic Instantiation of CLKLOCK primitive

The CLKLOCK primitive can also be used in an AHDL design. Figure 2 shows an example of an AHDL
instantiation of the CLKLOCK primitive.

The CLKLOCK primitive can be used with a VHDL design as well. Version 7.0 of MAX+PLUS II supports
instantiation of VHDL components with a GENERIC MAP clause. This GENERIC MAP clause is used to
specify the expected input frequency and ClockBoost factor. Figure 3 shows an example of instantiating the
CLKLOCK primitive in a VHDL design. This technique works in MAX+PLUS II VHDL, Cadence Synergy,
and Mentor AutoLogic. A similar technique works with Verilog designs in Cadence Synergy.

For designs created using Synopsys or Viewlogic ViewSynthesis tools, Altera provides a utility called
gencklk. Using gencklk, a user can generate a black box which represents the ClockLock or ClockBoost
circuit. This black box is instantiated into VHDL or Verilog HDL code. When MAX+PLUS II reads the
resulting EDIF file, it interprets the name of the black box to turn on the ClockLock circuit with the
appropriate parameters. Gencklk also generates a simulation model of the ClockLock circuit for pre-
synthesis simulation.

When using gencklk, the user will enter the expected input frequency and the ClockBoost factor. The user
also specifies the format for the black box and models: Verilog HDL, VHDL, or Viewlogic VHDL. Gencklk
will then create the black box for instantiation and the appropriate simulation models. Figure 4 shows an

120

example of instantiating a gencklk -generated model into VHDL code.

Finally, Altera has created schematic symbols for the CLKLOCK primitive for use with Viewlogic
ViewDraw, Cadence Concept, and Mentor Design Architect. These symbols are included with MAX+PLUS
II. For more details on using the ClockLock and ClockBoost circuits with a third-party tool, consult the
MAX+PLUS II Software Interface Guide for that particular tool.

3. Details of ClockLock Usage

When entering a design using the ClockLock or ClockBoost circuits, the user should follow the following
recommendations. The ClockLock circuit must be fed by one particular dedicated Clock pin, CLK1. The
ClockLock circuit must then directly drive the Clock inputs of registers. The registers may be located in logic
elements (LEs), embedded array blocks (EABs), or I/O elements (IOEs). The ClockLock output may not
drive any other logic; driving other logic signals can load the clock line, adding delay and negating the
benefits of the clock delay reduction.

The clock pin that drives the ClockLock circuit may not drive any other logic in addition to the ClockLock
circuit. In most cases, this will not present a problem. The user will want all registers to be clocked with the
ClockLock-generated Clock, and the ClockLock-generated Clock will not drive logic.. However, if the
ClockBoost feature is used to clock some registers in the design, but not all, then the user may want the same
clock pin to provide a multiplied and non-multiplied Clock throughout the design. In this case, the user will
drive the Clock signal into the device on two pins: one pint will drive the ClockBoost circuit, and the other
will drive the non-multiplied clock signal. inally, the ClockLock circuit locks only onto the rising edge of
the incoming clock. The rising edge of the ClockLock circuit’s output must be used throughout the design.

Figure 6 shows examples of illegal ClockLock and ClockBoost configurations.
Figure 6. Illegal Uses of ClockLock and ClockBoost

D Q

D Q

C lockLock
C lockBoost

D Q

D Q

D QC lockLock
C lockBoost

C lockLock
C lockBoost

C lockLock
C lockBoost

D QC lockLock
C lockBoost

121

Figure 7 shows how to successfully use a multiplied and non-multiplied version of the same clock within a
design.
Figure 7. Using Multiplied and Non-Multiplied Clocks in the Same Design

D Q D Q

A lte ra D e v ic e

C lock B o o s t

C lo c k tra ce
d rive s tw o p in s

o n d ev ice

4. Timing Analysis

Once the design is entered, the user will want to use tools to verify the performance of the design. Using
the ClockLock and ClockBoost features will improve the timing of the device. MAX+PLUS II has
simulation tools which model the performance of the user’s design. These simulation tools also model the
performance gains from using the ClockLock and ClockBoost features. MAX+PLUS II generates VHDL,
Verilog HDL, and EDIF netlists for use with third-party simulators as well. These netlists will also show the
improved performance from the ClockLock. Additionally, MAX+PLUS II simulation or netlists will show
the clock multiplication effect of ClockBoost.

In FLEX 10K devices, when using the ClockLock or ClockBoost, the clock delay will be reduced.
Additionally, the skew (difference in delay to different points in the device) will be eliminated. The Timing
Analyzer in MAX+PLUS II will show these changes. There are three modes in the Timing Analyzer:

5. Delay Matrix

The Delay Matrix shows point-to-point delays within a design. This is commonly used to compute clock-to-
output delays for a design. One of the components of clock-to-output delay is the clock delay from the clock
pin to the register. When the ClockLock feature is engaged, this clock delay will be minimized. The Delay
Matrix will show this reduction in clock delay and resultant reduction in clock-to-output delay. Additionally,
the Delay Matrix can show delays within the device, including the pin to register clock delay. The Delay
Matrix will show the reduction in this clock delay when the ClockLock feature is engaged.

When using a PLL to reduce clock delay, a negative clock-to-output delay is possible. However, Altera has
designed the ClockLock circuit to ensure that the clock-to-output delay is always positive. In fact, a
minimum output data hold time is specified in the data sheet.

122

6. Setup/Hold Matrix

The Setup/Hold Matrix shows setup and hold times for the pins of a design. Setup times for IOE registers
used as input register will improve when using the ClockLock feature, and the Setup/Hold Matrix will show
this improvement. However, an input signal which is registered in an LE register will see an increase in setup
time. Setup time is governed by the following equation:

TSU = TDATA + TREG_SU - TCLOCK

TDATA is the data delay, TREG_SU is the setup time of the register, and TCLOCK is the clock delay. The
ClockLock circuit reduces clock delay. Due to the reduced clock delay, the setup time at the pin is increased.
To minimize setup time when using the ClockLock circuit, the designer can use the I/O registers to register
the input.

7. Registered Performance

This mode of operation computes the maximum operating frequency of the design. The clock parameter that
affects registered performance is skew. Without ClockLock, there is so little skew within the Logic Array and
the I/O Elements that it is modeled as zero. However, there is skew between any Logic Element and any I/O
Element; the clock delay to the I/O element is less than the clock delay to the LE. If the critical path in a
design goes from an LE register to an IOE register, the Timing Analyzer will add the clock skew when
computing registered performance. When using ClockLock, this skew will become zero. The Timing
Analyzer will show this elimination of clock skew and show an improvement in registered performance.

When using the ClockBoost circuit in a MAX 7000S device, clock delay is unchanged. Therefore, the Delay
Matrix and Setup/Hold Matrix results will be unchanged. However, in FLEX 10K and MAX 7000S, the
Registered Performance result will change. The Registered Performance analysis will report the speed of the
multiplied clock; the user can divide this by the ClockBoost factor to find the maximum speed at which the
pin can be clocked.

If some registers in a design are clocked by the multiplied clock, and some are clocked by the non-multiplied
clock, the Timing Analyzer will not compute the maximum performance of registers bridging between the
multiplied and non-multiplied domains. The Timing Analzyer cannot compute this performance because it
does not know the relationship between the two clocks. The user can approach this in one of two ways. One
method is to use the Delay Matrix to analyze the delays between registers. Another method is to use a third-
party timing analysis tool which can analyze multi-clock systems.

8. Simulation

The ClockLock and ClockBoost circuits have effects on the timing and functionality of the user’s design.
To accurately simulate the user’s design, the simulation tool must consider the effects of the ClockLock and
ClockBoost circuits. Both the Functional Simulator and Timing Simulator in MAX+PLUS II take the
effects of the ClockLock and ClockBoost circuits into account. When simulating the ClockLock and
ClockBoost circuits, the MAX+PLUS II Simulator first checks that the circuits will function correctly. In
order for those circuits to lock onto the incoming clock, the incoming clock must be regular and must meet
the specifications stated in the datasheet. Additionally, the incoming clock frequency must match the
INPUT_FREQUENCY parameter entered into MAX+PLUS II. Assuming that these conditions are met,
the MAX+PLUS II Simulator will generate a clock signal which models the clock signal generated in the
device. If the ClockBoost feature is used, the clock signal will be multiplied. Where appropriate, the pin-
to-register clock delay will be reduced.

The MAX+PLUS II simulation model acts as a silicon PLL and must sample the incoming clock before lock-

123

on. The model won’t begin to generate clocks until it has sampled three incoming clocks. Before the
model locks on, it will output a logic low signal. If the incoming clock changes frequency or otherwise
violates the specifications, the model will lose lock. Once lock is lost, the model will output a logic low,
and will not attempt to re-acquire lock. Typically, this practice is not an issue; a designer will generally
simulate with a stable clock.

When performing a functional simulation in MAX+PLUS II, timing effects are ignored and all delays are
assumed to be zero. When used without clock multiplication, the ClockLock circuit affects only the timing of
the circuit, not the functionality. Therefore, no difference will be seen in the Functional Simulator when
using only the ClockLock circuit, other than the lock-on process. However, the Functional Simulator will
simulate the operation of the ClockBoost circuit, as that circuit affects the functionality of the design.

A designer can simulate the operation of ClockLock and ClockBoost circuits using VHDL and Verilog
simulators. To perform a pre-synthesis compilation before MAX+PLUS II compilation, a designer can use
the netlist output of gencklk. During compilation, MAX+PLUS II generates VHDL and Verilog models of
the ClockLock and ClockBoost circuits when they are used in the design. When used in a simulation, the
models require 3 clock cycles to lock onto the incoming clock. Also, if the incoming clock changes
frequency or otherwise violates the specifications, the model will lose lock. When the model is not locked,
it will output a logic low.

The designer can also used a gate-level simulator to simulate the operation of the ClockLock and ClockBoost
circuits. A VHDL or Verilog HDL simulator can be used in conjunction with a gate-level simulator to
simulate the operation of the ClockLock and ClockBoost circuits. Mentor QuickSim and Viewlogic
ViewSim simulators are support via this technique. A gate-level simulator can simulate the operation of the
circuit before or after MAX+PLUS II compilation. For more details on simulation in a third-party tool,
consult the appropriate Software Interface Guide.

9. ClockLock Status

Designers using the ClockLock circuit will want to know when the ClockLock circuit is locked onto the
incoming clock; operating a design before the clock is locked may result in inconsistent operation. To
support this, the ClockLock circuit has an optional LOCK output. This output is connected to one particular
I/O pin on the device. When the LOCK signal is enabled, the LOCK pin will drive a logic ‘1’ when the
ClockLock circuit is locked to the incoming clock, and will drive a logic ‘0’ when the ClockLock circuit
loses lock. The ClockLock circuit may lose lock if the incoming clock violates the specifications for jitter or
duty cycle. Lock may also be lost if the incoming clock contains glitches, becomes irregular, or stops.

To monitor the LOCK signal, the user can use an option in MAX+PLUS II. The Enable LOCK Output
Device Option turns on the LOCK signal. The Report File will indicate which pin is the LOCK pin. The
data sheet also lists which pin is the LOCK pin on all FLEX 10K package types. The LOCK signal can
then be externally monitored. For instance, an external circuit could reset the device whenever the LOCK
signal goes low and then reasserts. The LOCK signal can not be internally monitored; the internal logic will
experience incorrect operation once lock is lost, and must be externally controlled.

FLEX devices are configured upon power-up. The ClockLock configuration information is near the
beginning of the configuration data stream, so the ClockLock may lock onto the incoming clock while the
rest of the device is configuring. If the system clock is applied to the CLK1 pin during configuration, the
ClockLock circuit will be locked onto that clock before the FLEX 10K device finishes configuration.

MAX devices begin operation as soon as VCC reaches the operating level. When using the ClockLock
circuit, the user’s system should monitor the LOCK signal and reset the MAX device once the ClockLock
circuit is locked to the incoming clock.

124

For FLEX or MAX devices, the user’s circuit should monitor the LOCK signal. If the LOCK signal goes low,
then anything in the device clocked by the ClockLock circuit may have been incorrectly clocked, resulting in
erroneous results. For best results, the system should reset the Altera device after LOCK asserts again.

10. System Startup Issues

When using the ClockBoost feature, there is one issue that must be considered; the phase relationship of the
initial multiplied clock to the non-multiplied clock. Some designs that use the ClockBoost feature need a
control signal which toggles to indicate if the system is in the first or second half of the non-multiplied clock.
This control signal is used in the design to control the flow of data. Figure 8 shows an example of the
required control signal.

S y s te m C lo c k

2 X C lo c k

C o n tro l
S ig n a l

C o n tro l s ig n a l in d ic a te s w h ic h h a lf o f s y s te m
c lo c k c y c le is c u r re n t s ta te

Figure 8. Control Signal

The most obvious way to generate this control signal is to use a toggle flip-flop driven by the multiplied
clock. However, this may not always work; the control signal could be inverted from the system clock,
resulting in system malfunctions. Another approach is to create a control circuit that is clocked by the 1x
and 2x clocks; the output will not become active until both clocks are active.

The first approach uses two registers connect to asynchronously clear each other. When the non-multiplied
clock clocks the first register, it goes high, driving the control signal high. When the multiplied clock
clocks the second register, it goes high, since its D input is connected to the output of the first register. The
second register’s output is inverted and drives back into the CLRN input of the first register, clearing it.
When the first register is cleared, it drives the control signal low. When the control signal is driven low, it
asynchronously clears the second register, releasing the clear on the first register. The non-multiplied clock
will restart the process when it clocks the first register. This approach will always give a control signal
synchronized to the non-multiplied clock, even if the multiplied clock begins to clock before the non-
multiplied clock. Additionally, if there is a glitch on either clock, the circuit will reset itself when the
clocks become regular again. A disadvantage of this approach is that the clock-to-output delay for the
control output from the multiplied clock is longer, because it goes through the clear input of the first flip-flop.
Figure 9 shows this circuit.

125

DD

VCC

1X Clock

2X Clock

Control Signal

Figure 9. Control Signal Circuit

Another approach uses a chain of registers. The first is a DFF clocked by the multiplied clock. This
drives a DFF clocked by the non-multiplied act, which drives a TFF clocked by the multiplied clock. The
output of the TFF is the control signal. This circuit ensures that the control signal is not generated until
both clocks are operating. The toggle input to the TFF will not be driven high until both registers have been
clocked, meaning that both clocks are operating. A disadvantage of this approach is that if the multiplied
clock has a glitch, the output of the toggle flip-flop will be inverted. Figure 10 shows this circuit. In an
alternative implementation, the LOCK signal could drive the first flip-flop. If lock is lost, the control signal
will stop toggling. Once lock is regained, the control signal will restart.

DD

VCC

1X Clock

2X Clock
Control Signal

D

2X Clock

Figure 10. Control Signal Circuit

A final approach is for external logic to synchronously clear the 1x-clocked and the 2x-clocked systems once
LOCK has asserted, showing that the ClockBoost circuit has locked onto the incoming clock.

11. Multi-clock System Issues

When using the ClockBoost circuit to clock some of the registers in a FLEX 10K device, there is the
potential for clock skew in the system. The ClockBoost circuit in FLEX 10K reduces clock delay to the
register, while the registers that don’t use the ClockBoost circuit will not see the reduced clock delay. In
MAX 7000S devices, the ClockBoost circuit does not reduce clock delay, so no skew is introduced.

There are two cases to consider:
1. A register clocked by the ClockBoost clock drives a register clocked by the standard clock.
2. A register clocked by the standard clock drives a register clocked by the ClockBoost clock.

126

11.1 Case 1

Figure 11 shows an example of the case where a register clocked by the ClockBoost clock drives a register
clocked by the standard clock.

D QD Q

Clock Delay

tCO = 2 ns tLOGIC = 16 ns tSU = 2 ns

tDELAY1 = 4 ns

ClockBoost
tDELAY2 = 1 ns

Figure 11. Clock Skew Example

In this case, the maximum frequency possible between the two registers will be slowed. The effective TCO
of the source register is increased due to the increased clock delay. In this example, the clock cycle time is
computed with the following equation:

tCYCLE = (tDELAY1 - tDELAY2) + tCO + tDATA + tSU

For the example shown in Figure N, the minimum cycle time without clock skew is 20 ns. The skew between
the two clocks raises this cycle time to 23 ns. The difference in clock delays decreases the maximum
performance possible between the two registers. However, this will only impact system performance if the
critical path for the system lies between the two registers. If this path is slowing system performance, the
designer can speed it up with the usual techniques, such as pipelining, timing-driven synthesis, or cliquing.

The Altera-provided cycle-shared macrofunctions CSFIFO and CSDPRAM do not experience this slowdown.
The critical path on those macrofunctions is not a case where the source register is clocked by the regular
clock and the destination register is clocked by the ClockBoosted clock.

11.2 Case 2

Figure 12 shows an example of the case where a register clocked by the standard clock drives a register
clocked by the ClockBoost clock.

D QD Q

Clock Delay

tCO = 2 ns tLOGIC = 2 ns tSU = 2 ns

tDELAY2 = 4 ns

ClockBoost

tDELAY1 = 1 ns

Figure 12. Clock Skew Example

127

In this case, there is a possibility of a functional issue. If the sum of tCO, tLOGIC, and tH is less than the
difference in the clock delays, then the new data from the source register will reach the destination register
before the clock reaches the register. On FLEX 10K devices, the register tH is 0 ns. This case should be
considered when the source register and the destination register are in the same LAB with no intervening
logic cells. When both registers are in the same LAB, the sum of tCO and tDATA will be tCO +
tSAMELAB + tLUT from the timing model. In the current -3 speed grade, this computes to 2.1 ns. The
difference in delay between the two clock paths is about 3 ns. In this case, there is a potential for a
functional problem. However, if there is another logic cell between the registers, it will introduce an
additional 2.5 ns delay. Or, if the two registers are in different LABs, there will be an additional row delay
of at least 2.5 ns. In either case, the delay is sufficient to ensure that the data delay exceeds the difference
in clock delays, and the circuit will function as expected.

In the Altera-provided cycle-shared macrofunctions CSFIFO and CSDPRAM, the delay path between
registers clocked with the 2x clock and registers clocked with the 1x clock always exceeds the difference in
the clock delays. Therefore, there is no possibility of a functional issue with clock delay differences with
these macrofunctions.

The designer should use the MAX+PLUS II Timing Analyzer, or a third-party timing analyzer, to analyze the
timing of the system to ensure that neither of these two cases will affect a design using the ClockBoost
feature.

12. ClockLock and ClockBoost Specifications

A set of specifications is used to describe the operation of the ClockLock and ClockBoost circuits. The
critical parameters are described below. The values for these parameters are listed in the data sheet
describing the device used. Figure 13 shows waveforms describing these parameters.

Input
Clock

N N+tINCLKSTB

N+fCLKDEVtINDUTY

...

ClockLock-
Generated
Clock

tOUTDUTY

N N+tJITTER N-tJITTER

Figure 13. ClockLock and ClockBoost Waveforms

128

13. Duty Cycle

The Duty Cycle of a clock refers to the percentage of time the clock signal is high compared to the
percentage of time it is low. For instance, if a 50 MHz clock is low for 9 ns and high for 11 ns, it is said to
have a 45%/55% duty cycle. When using the ClockLock circuit, there is duty cycle specification that the
incoming clock must meet in order for the ClockLock circuit to lock on to the clock. This specification is
called tINDUTY. Additionally, the clock that the ClockLock circuit generates will meet a specification for
duty cycle. This specification is called tOUTDUTY.

14. Clock Deviation

When the user enters the CLKLOCK primitive into MAX+PLUS II or uses gencklk, he will enter the
expected frequency for the clock. There is a tolerance allowed relative to this expected frequency; for
instance, if 33 MHz is entered, 33.5 MHz is allowable. The fCLKDEV specification shows how far from the
entered expected frequency the input clock may deviate. If the input clock deviates from the expected
frequency by more than fCLKDEV, then the ClockLock circuit may lose lock onto the input clock.

15. Clock Stability

In order for the ClockLock circuit to lock onto the incoming clock, the incoming clock must be regular. If the
incoming clock is not a clean, regular signal, the ClockLock circuit may not be able to lock onto it. The
tINCLKSTB specification specifies how regular the incoming clock must be. The tINCLKSTB parameter is
measured on adjacent clocks, and shows how much the period of the clock can vary from clock cycle to
clock cycle. For instance, if clock cycle n is 10 ns, and clock cycle n+1 is 11 ns, the clock stability would be
1 ns.
The ClockLock circuit is designed so that commercially available clock generators and oscillators can easily
meet all requirements for the incoming clock. Commercially available clock generators and oscillators
specify their precision in terms of parts-per-million, which far exceeds the requirements of the ClockLock
circuit.

16. Lock Time

Before the PLL in the ClockLock circuit will begin to operate, it must lock onto the incoming clock. The
PLL will take some amount of time to lock onto the clock. This time is referred to as the lock time.
During this time, the ClockLock circuit will output an indeterminate number of clocks. Therefore, it is
recommended that the circuit be reset after the LOCK signal is asserted. In FLEX 10K devices, the
ClockLock circuit will lock onto the incoming clock during configuration. If the clock stops during
operation and then restarts, the ClockLock circuit will lock on after the lock time has elapsed.

17. Jitter

Jitter refers to instability in the output of the ClockLock circuit. The low and high times of the ClockLock-
generated clock may vary slightly from clock cycle to clock cycle. The tJITTER specification shows how
much the ClockLock-generated clock may change from cycle to cycle.

18. Clock Delay

In FLEX 10K devices, there are two specifications which show the delay from the dedicated clock pin into
logic. tDCLK2IOE shows the delay from the dedicated clock pin to an I/O element. tDCLK2LE shows

129

the delay from the dedicated clock pin to a logic element. Both of these parameters will become smaller
when the ClockLock or ClockBoost circuits are engaged in a FLEX 10K device. In a MAX 7000S device,
the tIN delay governs the speed of the clock input. This delay is unchanged when the ClockBoost circuit is
engaged.

19. Board Layout

A designer must consider the ClockLock circuit when designing the system printed circuit board. The
ClockLock circuit contains analog components, which may be sensitive to noise generated by digital
components. When the outputs of high-speed digital components switch, they may generate voltage
fluctuations on the power and ground planes on the board. While this poses no problem to digital
components as long as the fluctuation is within the digital noise margin, any voltage fluctuation may affect
the operation of an analog component. Since the ClockLock circuit contains analog circuitry, the designer
using the ClockLock feature must consider this effect.

All devices with ClockLock circuitry have special VCC and GND pins which provide power to the
ClockLock circuitry. The power and ground connected to these pins must be isolated from the power and
ground to the rest of the Altera device, or to any other digital devices. These pins are named VCC_CKLK
and GND_CKLK. There is one VCC_CKLK and one GND_CKLK pin on all Altera devices with ClockLock.
The report file generated by MAX+PLUS II will show these pins. Also, the data sheet describing the
device will show these pins.

Methods of isolating ClockLock power and ground include:

• Separate power and ground planes
• Partitioned power and ground planes
• Power and ground traces

The designer of a mixed-signal system will have already partitioned the system into analog and digital
sections, each with its own power and ground planes on the board. In this case, the VCC_CKLK and
GND_CKLK pins can be connected to the analog power and ground planes. Most systems using Altera
devices are fully digital, so there is not already separate analog power and ground planes on the board.
Adding two new planes to the board may be prohibitively expensive. Instead, the board designer can create
islands for the power and ground. Figure 14 shows an example board layout with analog power and ground
islands.

A n a lo g P o w e r a n d G ro u n d Is la n d

A lte ra D e v ic e

D ig ita l P o w e r a n d G ro u n d P la n e s

Figure 14. ClockLock Board Layout

130

The analog islands still need to be connected to power and ground. They can be connected to the digital
power and ground through a lowpass power filter consisting of a capacitor and an inductor. Typically, ferrite
inductors are used for power filtering. The ferrites act as shorts at DC, allowing power to drive the
ClockLock circuit. The ferrites’ impedance increases with frequency, filtering out high-frequency noise from
the digital power and ground planes. The board designer should choose capacitance and inductance values
for high impedance at frequencies of 50 MHz or higher. Figure 15 shows an example of power filtering
between the digital and analog power planes.

Digital Power Planes Analog Power Planes

Digital
VCC

Analog
VCC

Digital
GND

Analog
GND

Ferrites isolate AC
currents from analog
power planes

Capacitor filters
power noise

Figure 15. Isolating ClockLock Power

Due to board constraints, it may be impossible even to provide a separate power and ground island for the
ClockLock circuit. In that case, the designer may run a trace from the power supply to the VCC_CKLK and
GND_CKLK pins. This trace must be wider than a normal signal trace, and should be bypassed with a .2 F
capacitor as close to the VCC_CKLK and GND_CKLK pins as possible.

131

Conclusion

Altera’s ClockLock and ClockBoost features address issues that affect high-density PLDs in the range of
100,000 gates or more. The ClockLock circuit locks onto the incoming clock and generates an internal clock,
thus reducing clock delay and skew, and giving faster chip-to-chip performance. The ClockBoost feature
adds clock multiplication, giving designers the capability to create time-domain multiplexed designs.
Designers can also distribute a low-speed clock on the board, reducing layout issues.
The MAX+PLUS II development software makes taking advantage of the ClockLock and ClockBoost
features easy by providing an integrated solution for in-chip clock distribution. The combination of easy-to-
use software and advanced on-chip clock management gives designers high performance at high densities.
Design success with the ClockLock and ClockBoost circuits can be ensured by following the guidelines
covered in this paper.

References

Siulinski, James A. “Design and layout rules eliminate noise coupling in communications systems,” EDN,
June 20, 1996, pg. 95

132

XVII. Implementation of a Digital Receiver for Narrow Band

Communications Applications.

Kevin Fynn, Toby Tomlin, Dianfen Zhao*

Cooperative Research Centre for Broadband and Telecommunications and Networking
GPO Box U 1987, Perth 6845, Western Australia.

Kevin Fynn: Ph: +618-9266-3432, Fax+618-9266-3244 Email: kevin@atri.curtin.edu.au
Toby Tomlin: Ph: +618-9266-3432, Fax+618-9266-3244 Email: toby@atri.curtin.edu.au

*Altera International. Ltd., Suites 908-920, Tower 1, Metroplaza, 223 Hing Fong Road, Kwai Fong, New

Territories, Hong Kong. Ph: (852) 2487-2030 China Cellular Ph: 0139-2462670 China Page: 191-1939191
Fax: (852) 2487-2620 Email: dzhao@altera.com

Abstract

This paper describes the implementation of a digital receiver, focusing on a single PLD implementation of
the baseband receiver functions of matched filtering, symbol timing recovery, interpolation, and symbol
detection.

1. Introduction

The software programmable, or “software radio” concept is driving the development of digital receivers with
increasing flexibility via increased programability [1]. To meet this end, software programmable Digital
Signal Processors have been used for narrow-band communications applications to perform baseband
functions of matched filtering, symbol timing recovery and symbol detection. However, symbol rates have
been limited to about 50 kilosymbols/s. With the recent introduction of large PLDs (Programmable Logic
Devices) it is possible to realise a single chip PLD-based digital receiver that can compete with DSPs,
offering even higher bit rates - in the hundreds of kilosymbols/s.

In this paper we describe a single chip implementation, using the FLEX 10K series of PLDs from Altera
Corporation, of a digital receiver for narrowband communications applications employing xDPSK
modulation schemes. To achieve this end, the Mentor Graphics DSP Station tool suite was used to perform
fixed-point bit-true simulations of the receiver architecture in order to optimise the timing synchronisation
algorithms, matched filtering and wordlengths, all from within an integrated framework. The output VHDL
code, produced by the high-level MISTRAL2 tool, is synthesised using Galileo, targeting the selected PLD,
followed by a compilation using Altera’s MAX+PLUS II development tool. The “8-bit receiver” offers an
implementation loss of 1dB at a BER of 10-4 for π/4-DQPSK.

2. Digital IF Receiver architecture.

The digital IF receiver, shown in figure 1, represents a significant departure from the classical superheterody
ne architectures[2]. In this approach, a single wideband RF front-end downconverts a large portion, or al
l, of the channel spectrum to an Intermediate Frequency (IF) where it is digitised by a wideband A
DC. The digitised information represents all the channels in a frequency-division multiplexed system.
 An off-the-shelf programmable Digital-Down-Converter (DDC) selects a frequency channel of intere
st, downconverts to baseband, and reduces the bandwidth by decimating the data stream. The DDC
 outputs approximately 4 complex samples/symbols to the PLD-based baseband digital receiver. The

133

 word “approximate” has been used for only free-running oscillators which means that the sampling
 rate is not synchronous to the symbol rate. The function of the baseband receiver is to perform
matched filtering, timing recovery, and symbol detection. A number of DDC/PLD pairs can be fed
 from the same ADC offering a multi-channel capability. In the remainder of this paper the feature
s and implementation of the PLD are detailed.

Figure 1: Digital IF receiver

2.1 PLD Baseband processing functions

Figure 2: Baseband function

The baseband functions are shown schematically in figure 2. The complex input signal is operated by a
matched filter so that the overall system response is that of a raised cosine. Because the symbol rate 1/T
and sampling rate 1/Ts are asynchronous and incommensurate a timing recovery algorithm is required to
estimate the fractional time delay ε in order to determine the optimum sampling position in each symbol.
The relation between T and Ts is given by,

{ }()

(3)

(2)

(1)

int

i
ss

i

ss
i

iismfSmf

m
T
T

T
Tn

T
T

T
TnLm

where

mTrTnTr

−+=

+=

+=

 +

∧

∧

∧

εµ

ε

µε

The term rmf(miTS) represents the outputs samples from the matched filter and the interpolated samples are
given by rmf(miTS+µiTs). In this design a feedforword non-data–aided spectral estimation technique is
realised [3] to directly compute ε, from which the parameters (mI,µi) can be obtained. From (1) we note
that the interpolated sample is the optimum sample for symbol detection. The asynchronous clocks will

Matched Filter

Matched Filter

Timing Estimator

Interpolator

Detector

Interpolator

I-Channel

Q-Channel

Detected
Symbols

Q

I
ADC DDC

Baseband
Digital Receiver

(PLD)

IF Input Digital
Samples

Complex
Baseband
Samples Demodulated

Data

fc=10.7 MHz
IF frequency

40.96 MSPS

fs=40.96 MHz
Free-runnung

~4 Samples
/Symbol

RF
front-end

Cycle slip
detector

134

eventually cause ε to wrap around and therefore cause a cycle slip. The occurrence and direction (i.e
slightly positive or negative difference in symbol and sampling clocks) of a cycle slip can be detected. For
a positive cycle slip no interpolation is performed and the samples are simply discarded. On the otherhand,
a negative cycle slip requires a double interpolation to be done on the same set of samples to produce two
data outputs (at ε and at ε-T). After interpolation, decimation produces only one optimal sample per
symbol. Due to the residual frequency difference between the transmit and receive clocks the complex
baseband signal is slowly rotating at the difference angular frequency. We assume that this frequency
offset is small compared to the symbol rate, and therefore only phase recovery is required for a block of
symbols. For differentially encoded symbols no phase rotation is necessary. The symbol detector module
then decodes the symbols to produce the output data stream.

3. PLD design approach.

The Mentor Graphics DSP Station was used to design the PLD. The integrated set of CAD tools addresses
the whole process of DSP design and includes system simulation, bit-true simulations of receiver modules,
optimisation of wordlengths, logic synthesis, all from with an integrated framework. A key tool is the high
level synthesis tool Mistral2, which produces RTL VHDL from high-level algorithmic descriptions. The
Galileo logic synthesis tool then acts on the VHDL code and uses technology-specific optimisation
algorithms to take full advantage of target PLDs, which in this design is the Altera FLEX 10K family.

In a first step the entire communication system is modelled using the Telecom simulation tools. The bit-
error-rate (BER) versus signal-to-noise ratio (SNR) curve is used as the benchmark against which the
receiver implementation is compared. At this stage the designer must have a specified operating SNR and
implementation loss as a performance indicator. The implementation loss is determined by both the
algorithm and the effects of finite word lengths. Next a floating point model of the receiver algorithms are
simulated to obtain the performance of a perfect implementation. The floating-point models are
successively replaced by finite word length bit-true models of the algorithms to be implemented. The
performance of the bit-true model is exactly that of the actual PLD. This process of replacing floating-point
units with finite word models is a very difficult and time-consuming process- an area in great need of CAD
tools. In our receiver design, as a first approach all modules were implemented as a 8-bit machine and no
serious attempt has been made to optimise the particular submodules.

4. PLD Implementation

4.1 Matched Filters

The root raised cosine matched filters were realised using a 15 tap Direct Symmetrical Form FIR in order to
minimise storage coefficient storage and number of multiply operations.

4.2 Timing Estimator

The timing estimator algorithm is summarised in Figure 3

Figure 3: Timing Estimator Block Diagram

xk j2π
k
N
----–

 exp

k mLN=

m 1+()LN 1–

∑ 1
2π
------ ()arg–+

 2

 2

Planar
Filtering

Kalman
Filter

Kalman
Filter

ε̂

Re Xm()

Im Xm()
q t()

i t()

xk
DFT

135

The algorithm for symbol timing recovery is described in [3], and is based on the squarer synchron
iser. Filtered samples are first squared, which produces a spectral component at 1/T. This spectral
component is extracted by calculating the complex Fourier coefficient at the symbol rate for each se
ction of length LT (i.e. LN samples). The normalised phase of this estimate is then an unbiased es
timate of the fractional time delay ε. By choosing 4Ts≈ T, or N=4, the DFT reduces to the addition
 and subtraction of squared output samples. The length of the DFT influences the variance of the
estimate. Increasing the length reduces the variance of the timing estimate, at the expense of extra
hardware required to compute the DFT partial products. A first order Kalman filter is used to smo
oth the real and imaginary parts of the complex phasor before computing the argument. A major c
hallenge was to determine a suitable arctan algorithm which was hardware efficient whilst not domi
nating the implementation loss of the system. The algorithm used to perform the arctan function is
 shown in Figure 4. The binary representations of the operand’s are quantised using a non-linear qu
antiser with step sizes as powers of two. The position of the MSB in each argument is determined
and subsequently subtracted. This number is used to reference a lookup table(LUT) which stores the
 arctan values. The number of elements in the LUT is determined by the wordlength of the operan
ds. The quadrant is determined by the sign of the input operands.

Figure 4: Arctan algorithm based on look-up tables.

4.3 Interpolators

Linear interpolation is used to obtain the optimal sampling point in each symbol, as shown in Figur
e 5

Figure 5: Linear interpolation

m=MSB(y)
n=MSB(x)

index=(y-x)

if (index >= 0)
out=LUT_1(index)

else
out=LUT_2(abs(index))

end

y x

out

out=arctan(y/x)

y x

out

LUT_1=atan(2index)
LUT_2=atan(2- index)

sampled values
interpolated values

a
e d c

b

µι

mi mi-1 mi-2 mi+1 mi+2

136

4.4 Decimators

The interpolated samples are decimated such that only one optimal sample per symbol is output. T
he output for both I and Q arms is an array with two elements. This allows for the case when two
 optimal samples are interpolated when a negative cycle slip occurs. An output flag is also generat
ed to signal when two samples, one sample or no samples are to be output. This flag is used in s
ubsequent hardware to reconstruct the original data sequence.

4.5 PLD partitioning

Figure 6 shows the partitioning of the PLD as four separate Mistral2 modules, each optimised to its
 specific subtask. This results in a faster design, due to the resulting pipelining. A master controlle
r synchronises the modules and controls all dataflow between the modules. The data communicatio
n between the modules uses Double Buffered Memory (DBM) in a master-salve configuration. The
first module writes only to the master part, while the second module reads only from the slave part.
 At the end of each frame the data is passed from master to slave in a uni-directional communicati
on.

Figure 6: PLD Architecture of Digital IF Receiver

5. Logic Synthesis

There are many possible implementations of the receiver, depending on the way the memory functio
ns in each Mistral2 module are implemented. To make most efficient use of the FLEX 10K family
 most of the EABs are used to implement RAM functions, and therefore maximises the number of
free Logic Elements (LEs). The final synthesis results for implementation of the PLD is shown in
Table 1. This design can be accommodated in a single Altera EPF10K130V device, which has 665
6 LEs and 16 EABs, but we believe that the design can be further optimised to fit into a smaller
EPF10K100 device.

Design Block LE estimate CP estimate (ns)
Top-Level 930 15
Manage 58 13

Matched Filters 1306 100
Timing Estimator 1965 108

Interpolators 1853 103

Mfilters
Timing

Estimator

Interpol-
DecimatorsManage

D
B

M

DBM

D
B

M

D
B

M
D

B
M

D
B

M

D
B

M
D

B
M

DBM

REC_CHIP

ators

I_IN

Q_IN

FRAME
REQ

I_OUT

Q_OUT

OE

CLK
RST

137

Decimators 453 38
Total 6565 108

Table 1: Logic synthesis of the PLD baseband modules

138

6. BER performance and implementation loss.

Figure7 shows the BER vs SNR curve for a 8-bit implementation of the digital receiver using π/4-DQPSK.
For a BER of 10-4 the implementation loss of the receiver is approximately 1dB.

Figure 7: BER vs SNR for the 8-bit PLD receiver (π/4-DQPSK modulation)

Eb/No

0 2 4 6 8 10 12 14

B
it

er
ro

r r
at

e

1.0e-6

1.0e-5

1.0e-4

1.0e-3

1.0e-2

1.0e-1

8-bit receiver
Theoretical

139

Conclusions

This paper describes a single-chip PLD implementation of the baseband processing functions of digital-IF
receiver, using Mentor Graphic’s DSP Station tool suite as the design environment. This suite of tools
provides an excellent integrated frame work for data management, design simulation, algorithm optimisation,
and to model the bit-true performance of a DSP algorithm. The target PLD was Altera FLEX 10K series
because of its EAB features.

The final design was partitioned into 4 modules for increased pipelining. With the current architecture and
synthesis the receiver can work at bit rates of up to 100 kbit/s with a 10 MHz clock frequency.

With the experience gained from using the Mistral2 software tool, it would be more efficient to use hand
coded VHDL for the time/area critical operations on the datapath. Mistral2 is excellent as an interconnect
framework, and controller generator. This would result in designs with a much faster datapath and a
significantly smaller microrom because of the dual advantage reducing the schedule length and the microrom
word width.

In addition further improvements can be achieved by better partitioning of the design. For example the
timing estimator could be partitioned into two further sub-modules, one to perform the DFT, and the other to
perform the planar filtering and arctan function. The resulting module would be smaller and faster than the
existing timing estimator.

With the current design it is possible to realise a single-chip PLD solution using a EPF10K130V device and
it is not unrealistic to expect that with the improvements suggested above the design can be ported to smaller
lower-cost PLDs such as the EPF10K100 device. We expect that with the increased pipelining bit-rates of
up to 1 Mbit/s could be supported.

References

1. J. Miola, “The Sotware Radio Architecture”, IEEE Communications Magazine, May 1995, pp26-38
2. H. Meyr and Ravi Subramanian, “Advanced Digital Receiver Principles and Technologies for PCS”,

IEEE Communications magazine, Jan 1995, pp68-78
3. Martin Oerder and Heinrich Meyr, “Digital Filter and Square Timing Recovery”, IEEE trans. on

Communications, Vol. 36. No. 5. May 1988

140

XVIII. Image Processing in Altera FLEX 10K Devices

Martin Langhammer, Kaytronics Inc.

Caleb Crome, Altera Corporation

Introduction

This paper will examine several methods by which programmable logic may be employed to implement
image processing acceleration applications, particularly for unique requirements. Transform coding will be
the primary focus, with quantization only considered when necessary for illustration. After a discussion of
possible cases where custom solutions may be warranted, and a brief overview of new programmable logic
devices and their suitability for image processing, some common transforms will be shown in the context of
programmable logic implementations.

1. Why Use Programmable Logic?

Although high volume consumer products such as JPEG and MPEG now may be designed using standard,
off-the-shelf components, there are many industrial applications where unique requirements dictate that a
custom solution be provided. Examples include:
Non-standard Sizes – While MPEG and JPEG typically provide for only common interchange formats, such
as CCIR 601, some medical applications involve image sizes up to 4K by 4K pixels, non-interlaced.

Frame Rate – Processing may be required in excess of 30 fps, such as when real time or accelerated
processing of high speed (slow motion) image sequences is needed.
Quality – If high quality image reproduction is not required, a simpler transform may be used for
compression. On the other hand, a special form of quantization may be required to provide extraordinary
image fidelity.

Operations – Other operations, such as image resizing, may be required at the same time as compression.
Both operations may be performed during the processing of the transform, rather than separately.

Image Formats – Front-end processing can be implemented in programmable logic to convert the image
format, or the transform can be easily recast to handle the incoming format.
Changing Requirements – If several different flows are expected, an entirely new image processing engine
can be configured, in circuit.

Previously, such requirements in real time often dictated the use of multiple DSPs or other processors, or else
ASICs with their associated development time, hidden costs, and high risk.
Programmable logic also brings benefits during MPEG development. By implementing the functional blocks
required for this standard in real time, such as the DCT, IDCT, Q, IQ, MS/ME, and MC, real time system
prototyping, or even test equipment, is now possible.

2. Altera FLEX 10K CPLD

The Altera FLEX 10K has some unique features particularly suited to image processing. The EAB, or
embedded array block, may be configured as a fast static RAM, with better than 50 MHz throughput. Its size,
at 256x8 bits, is significant for image processing in several ways; the 256 location size is the same size as an
MPEG macroblock with two luminance and two chrominance blocks, in 4:2:2 format, or the 16 by 16 search

141

area for the MPEG ME operation. For other standards, four 8 by 8, or one 16 by 16 pixel block can be
contained in one EAB. If a larger precision than 8 bits is required, multiple EABs may be accessed in parallel.
In addition, four DCT quantization tables, or a JPEG or MPEG Huffman coding table may be fitted into
EABs.

Many two-dimensional image processing transforms can be implemented as separable transforms, i.e.
intermediate values will be generated, and must be stored in some form of transposition memory. The
relatively small EAB, with extremely fast access capability, can store one or several blocks of intermediate
values.

Direct 2D implementation separable transforms are also possible. Although very fast, they are generally very
large, and ungainly to implement in hardware [3].

3. Image Transform Examples

3.1 Walsh Transform

The Walsh transform is a simple example of an image processing transform that may be optimized for a
programmable logic implementation. The Walsh transform is

W u v
N

f x y
y

N

x

N
b x b u b y b v

i

N
i n l i i n l i(,) (,) ()[() () () ()]= −

=

−

=

−
+

=

−

∑∑ ∏ − − − −
1

1
0

1

0

1

0

1

which is a square matrix with orthogonal rows and columns. In the case of the common image block coding
size of 8 by 8 pixels, it is of the form (1D)

W =
1
8

1 1 1 1 1 1 1 1
1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 -1 -1 1 1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 -1 1 1 -1
1 -1 1 -1 -1 1 -1 1
1 -1 1 -1 1 -1 1 -1

when presented in ordered sequence, i.e. increasing frequency per row. This form is sometimes referred to as
the Walsh-Hadamard form. This matrix can be decomposed into a number of more sparse matrixes, again
containing only adds and subtracts, which can be used for the efficient implementation of an image
processing engine in programmable logic.

The following simulation will serve to illustrate the Walsh transform. A simple zonal coding will be used for
quantization, where only the F(0,2) block of frequency values will be retained, for an approximate
compression ratio of 7:1. The compressed image is then decompressed with the inverse Walsh transform,
which is of the same form as the forward transform.

142

Figure 1: Original image

Figure 2: Compressed (7:1) image

The smiling face of this mathematician should give the reader some clue as to the cont ents of our next paper!

3.2 Discrete Cosine Transform

The discrete cosine transform (DCT) is at the heart of many image processing standards, notably JPEG and
MPEG. An implementation was crafted for the Altera FLEX 10K family, based on a fast transform
developed for programmable logic [3]. The DCT is

C(u,v)= c u c v f(x,y)
(2x +1)u

2N
(2y +1)v

2Ny

N

x

N

() () cos cos
π π

=

−

=

−

∑∑
0

1

0

1

where { (), ()} ,{ (), () }, ,{ (), () , ,... }c u c v
N

c u c v
N

c u c v N= = = −
1

0
2

12 1 .

For the 1D case, the DCT matrix is

143

1 .981 .924 .831 .707 .556 .383 .195
1 .831 .383 -.195 -.707 -.981 -.924 -.556
1 .556 -.383 -.981 -.707 .195 .924 .831
1 .195 -.924 -.556 .707 .831 -.383 -.981
1 -.195 -.924 .556 .707 -.831 -.383 .981
1 -.556 -.383 .981 -.707 -.195 .924 -.831
1 -.831 .383 .195 -.707 .981 -.924 .556
1 -.981 .924 -.831 .707 -.556 .383 -.195

For Cx

x= cos()π
16 , the matrix is decomposed the following way. Refer to [3] for an explanation of how the

multiplicative matrix is implemented in an optimal fashion.

The 1D DCT is then the matrix product Add Add Add PX X P1 2 3• • • • • . The matrixes are:

1Add =

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 -1 0 0 0
0 0 1 0 0 -1 0 0
0 1 0 0 0 0 -1 0
1 0 0 0 0 0 0 -1

2Add =

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 - 1 0 0 0 0 0
1 0 0 - 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

144

3Add =

1 1 0 0 0 0 0 0
1 - 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

X =

1 0 0 0 0 0 0 0
0 C 0 0 0 0 0 0

0 0 c 0 0 0 0 0

0 0 C C 0 0 0 0

0 0 0 C 0 0 0 0

0 0 0 0 C 0 C 0

0 0 0 0 c 0 C C

0 0 0 0 C 0 0 0

0 0 0 0 C C C C

0 0 0 0 0 C 0 0

0 0 0 0 0 C 0 C

0 0 0 0 0 C C C

4

6

2 6

2

7 3

5 7 3

3

1 3 5 7

1

5 1

7 1 5

PX =

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 - 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 - 1 0
0 0 0 0 0 0 1 0 0 - 1 0 0
0 0 0 0 0 0 0 1 0 0 0 - 1
0 0 0 0 0 0 0 0 1 0 0 0

3.3 Implementation

The implementation of the DCT equations are straightforward in the Altera FLEX 10K devices. For the 1-
D case, the equations can be reduced to the following set of equations. Yx are the input data, and Fx are the
output data.

145

 Stage1:
 A1 = X1 + X8
 A2 = X2 + X7
 A3 = X3 + X6
 A4 = X4 + X5
 A5 = X4 - X5
 A6 = X3 - X6
 A7 = X2 - X7
 A8 = X1 - X8

Stage2:
 B1 = A1 + A4
 B2 = A2 + A3
 B3 = A2 - A3
 B4 = A1 - A4
 B5 = A5
 B6 = A6
 B7 = A7
 B8 = A8

Stage3:
 C1 = B1 + B2
 C2 = B1 - B2
 C3 = B3
 C4 = B4
 C5 = B5
 C6 = B6
 C7 = B7
 C8 = B8
 C9 = -C3 = -B3
 C10 = -C6 = -B6
 C11 = -C5 = -B5
 C12 = -C7 = -B7

Stage4:
 D1 = C1
 D2 = C2
 D3 = C3
 D4 = C4
 D5 = -C3 = C9
 D6 = C5
 D7 = C6
 D8 = C7
 D9 = C8
 D10= -C6 = C10
 D11= -C5 = C11
 D12= -C7 = C12

Vector Stage
 E1 = D1
 E2 = D2 . X6

146

 E3 = (D3,D4) . (X6, X2)
 E4 = (D4,D5) . (X6, X2)
 E5 = (D9, D8, D7, D6) . Vx
 E6 = (D10, D9, D11, D12) . Vx
 E7 = (D12, D6, D9, D7) . Vx
 E8 = (D11, D7, D12, D9) .Vx

Final Stage
 Y1 = E1
 Y2 = E5
 Y3 = E3
 Y4 = E6
 Y5 = E2
 Y6 = E7
 Y7 = E4
 Y8 = E8

Coefficients:
 X1 = 0.981
 X2 = 0.924
 X3 = 0.831
 X4 = 0.707
 X5 = 0.556
 X6 = 0.383
 X7 = 0.195

 In general,
x pi yy = cos((*) /)16
V X X X Xx = { , , , }1 3 5 7

These equations are depicted in Figure 3.

Figure 3: Block Diagram of an eight point DCT.

The vector multiplier blocks take the dot-product of their inputs against the constants Xn. The vector
multipliers are implemented very efficiently by using a lookup table based architecture.
Since the 2-D DCT is a separable transform, it is implemented using two identical 1-D DCT stages, with
intermediate values stored in the FLEX 10K EAB (Embedded Array Block). The block diagram for the 2-
D DCT is shown in Figure 4.

The vector multipliers used in this design use an efficient architecture optimized for the FLEX family. For
more information on how they are implemented, please see Altera Application Note AN73, Implementing
FIR

4. Filters in FLEX Devices.

The entire 2-D DCT fits into less than 50% of the Altera FLEX 10K50. This design is capable of
processing a 1280x1024 video frame at over 30 frames per second in the slowest speed grade of this device.

147

8

Video Data In: X(n)

8

Data

Addr Addr

Data

Staging Register

8

Output Data Y(n)

Control Block While DCT Block 1 is writing
to EAB A, DCT Block 2 is
reading from EAB B. This
maximizes throughput.

Embedded
Array Block

B

Embedded
Array Block

A

Staging Register

1-D DCT Block

Address Generator
A

Address Generator
B

1-D DCT Block

Figure 4: A full 2-D DCT implementation.

This block fits into less than 50% of an Altera 10K50. In the slowest speed grade in the 10K family, this
design is easily capable of handling full motion video at 1280x1024 pixels at 30 frames per second.

148

Conclusion

Optimizing image processing transforms for implementation in the Altera FLEX 10K architecture results in
an extremely fast and flexible solution for video DSP applications. Here we covered the Walsh transform
and the DCT. We have implemented a DCT that is capable of very high speed operation and moderate
silicon resources. These examples illustrate real-time system-level functionality now possible with large
programmable logic devices such as the 10K family.

References

1. W. K. Pratt, "Digital Image Processing", John Wiley & Sons, Inc., New York, 1991
2. R. C. Gonzalez, R.E. Woods, "Digital Image Processing", Addison Wesley, Reading, MA., 1993
3. M. Langhammer, "Optimal DCT for Hardware”, Proceedings, ICSPAT '95, 1995
4. W. B. Pennebaker, J. L. Mitchell, "JPEG Still Image Compression Standard", Van Nostrand Reinhold,

New York, 1993

149

XIX. The Importance of JTAG and ISP in Programmable Logic

Robert K. Beachler
Manager, Strategic Marketing and Communications

Altera Corporation

Programmable logic has become the bedrock of digital design. The benefits that a programmable solution
brings, such as design flexibility, fast development times, and inventory risk reduction have propelled these
devices into mainstream usage. No longer are programmable devices used for small production volumes,
rather, these high-capacity devices are now used in significant volume applications, such as laptop computers,
networking cards, and even automobiles. The increasing usage in volume applications brings new device
feature demands typically outside the scope of low-volume products. Such aspects as streamlining the
manufacturing flow, improving testability, and allowing for field modifications are vitally important to
product success, but until recently may not have been part of the development of new PLD architectures.
The increased capacity, pin counts, and volumes of PLDs have combined to require suppliers of high
capacity devices to develop new devices that fit the needs of not only the design engineer, but also the
production and quality engineers as well. The new MAX 9000 family of programmable logic devices from
Altera solves these problems by offering both JTAG circuitry for testing and in-system programming (ISP)
for manufacturing.

1. Packaging, Flexibility Drive In-System Programmability Adoption

As programmable logic devices increase in capacity, so does the number of I/O pins per device. This
requires careful consideration on the part of the PLD vendor when selecting package options. The selection
for high-volume, high-pin count packages is limited. Pin grid array packages are the easiest to use, but
unfortunately they are also quite expensive, and have a large footprint, which consumes board space. Quad
flat pack packages are by far the most popular package for high-pin count devices, as they are relatively
inexpensive, and offer a small footprint. However, QFP packages are very fragile, and the leads deform
quite easily. This is a distinct problem for programmable devices, which typically need to be inserted into a
programmer for programming. Altera provided a solution to this problem with a QFP carrier technology
that protects the leads during handling and programming.

The emergence of in-system programming (ISP) is a complementary solution to this problem. With an ISP
devices, such as the MAX 9000 family, the devices may be soldered directly to the PC board before
programming. The device may then be programmed multiple times on the board using standard
5-Volt signals. Internal to an ISP device are charge pumps that provide the high voltage level necessary to
program the EEPROM cells.

2. Prototyping Flexibility

During the engineering phase of a project, ISP may be used to quickly change the circuitry of the system
without ever having to change the board layout. As design errors are uncovered, the designers may change
their design and download to the board the new design, with the corrected design. One important aspect of
this approach is that the pinouts of the device cannot change, as this would necessitate a board layout change,
costly in both money and time. Therefore, Altera designed the MAX 9000 devices with ISP in mind,
adding the necessary routing resources so that engineers may permute their design without having to change
the device pinout. ISP devices currently offered by other vendors do not offer this capability, and in many
situations a board change is necessary.

150

Additionally, companies may use this capability for unique situations to customize the board. For example,
an add-in card manufacturer may wish to do a PCI and EISA-bus compliant version of its product. Rather
than designing two distinct products, the bus interface design may be accomplished in an ISP device. At
the manufacturing level, the device may be programmed with either the PCI interface design or the EISA
interface design, saving cost and decreasing inventory risk.

ISP also offers the ability to do field upgrades of systems where hardware changes may be sent via floppy
disk, network, or modem.

3. ISP Benefits to Manufacturing

The manufacturing flow using programmable devices is currently somewhat cumbersome. The current
production method for non-volatile programmable devices is to program the devices first, place them in
inventory, and then place them in the board during production, and then test the board. With ISP devices,
the device is soldered directly onto the board, and may then be programmed using a download cable or with
the board tester itself.

The ability to program a MAX 9000 device in the system multiple times expands the capability of the
manufacturing process. In many situations, a company may choose to place a test design into the PLD, using
the PLD as an integrated part of the testing procedure, and after testing is complete, place the actual
production design into the device.

4. Decreasing Board Size, Increasing Complexity Drive Adoption of JTAG
Boundary Scan

The decreasing size of printed circuit boards, enabled by the advances in surface-mount packages, has
resulted in difficult board testing issues. Traditional testing methods consisted of testing devices before
insertion onto the board, and once the board is manufactured, numerous contact points were placed upon the
board for a board tester to attach to the wire traces on the board. This “bed-of-nails” testing methodology
requires significant board space and can sometimes cause continuity and pin shorting, as well as electrical
overstress caused by back driving devices.

In the 1980’s, the Joint Test Action Group (JTAG) developed the IEEE 1149.1-1990 specification for
boundary-scan testing. The Boundary-Scan Test (BST) architecture developed offers the capability to
efficiently test components on circuit boards. As shown in Figure 1, the JTAG methodology consists of a
series of scan registers at the I/O pins of the device. Printed circuit boards developed with JTAG compliant
devices allow the testing of a single device, the connections between devices, and functional tests.

5. JTAG Defined

The JTAG specification defines 5 signals used to control the operation of the boundary-scan registers. The
JTAG signals are described in Table 1. With these signals and the associated commands designers may
develop test procedures to check the functionality of specific devices, as well as the entire board.

151

Pin Name Description
TDI Test data input Serial input for instructions and test data. Data is shifted

in on the rising edge of TCLK
TDO Test data output Serial data output pin for instructions and test data. The

signal is tri-stated if data is not being shifted out of the
device

TMS Test mode select Serial input pin to select the JTAG instruction mode
TCLK Test clock input Clock pin to shift the serial data and instructions in and

out of the TDI and TDO pins
nTRST Test reset input Active-low input to asynchronously initialize or reset the

boundary-scan circuit

Table 1. JTAG Pin Descriptions

Devices that are JTAG compliant must support a set of mandatory instructions. These instructions are
Sample/Preload, Extest, and Bypass. These instructions are fed to the Test Access Port (TAP) Controller,
which manages the scan circuitry on the devices.

Command Code Description
Sample/Preload 101 Allows a snapshot of the signals at the device pins to be

captured and examined
Extest 000 Allows the external circuitry and board-level interconnections

to be tested by forcing a test pattern at the output pins and
capturing test results at the input pins

Bypass 111 Enables data to pass through the device synchronously to
adjacent devices during normal device operation

Table 2. JTAG Instructions Required for Compliance

6. MAX 9000 Combines ISP and JTAG

Recognizing the growing use of high-capacity programmable logic in high-volume applications, Altera
combined both JTAG capability and ISP in its new MAX 9000 family of devices. These devices have
combined the JTAG and ISP interface to the same pins on the MAX 9000 devices, as shown in Figure 1.

By combining the JTAG and ISP pins and circuitry, Altera is able to save significant die size, reducing
overall cost of the device. The TAP controller circuitry handles the JTAG commands while in BST mode,
and the programming circuitry control during programming mode. While being programmed, all pins are
placed in a high-impedance state (Z) to avoid any spurious signals being sent to other areas of the board.

Altera offers a serial port download cable, called the BitBlaster, that may be connected to the printed circuit
board for the programming of its ISP devices. Alternately, engineers may program their board testers to
provide the necessary signals to program MAX 9000 devices. By using the board tester to perform device
programming, companies need only to insert the completed PC board into the board tester for both device
programming and JTAG testing. In this way the manufacturing flow is streamlined.

The combination of in-system programmability and JTAG boundary-scan features provides the engineer with
the features necessary to complete the next generation of designs. Equipped with these tools, engineers will
be able to rapidly develop, manufacture, and test electronic systems well into the year 2000.

152

Figure 1. ISP/JTAG Board Configuration

Caption: With MAX 9000 devices, only 5 external connections are necessary for in-system programming
and JTAG boundary-scan testing.

Author Biography

Robert K. Beachler is the Manager of Strategic Marketing and Communications at Altera Corporation. He
has over eight years experience in PLD device architectures, EDA software, and market research. He has
previously held positions at Fairchild, Cadence, and Dataquest. He holds a BSEE from Ohio State
University

TCLK

MAX 9000

Core
Logic

TDO

TMS

TDI

nTRST

Core
Logic

ISP/JTAG Board Connector

ISP/JTAG Pins
Scan Registers

Interconnections to be tested

MAX 9000 or other
JTAG Device

MAX 9000 or other
JTAG Device

To JTAG Tester
or Programmer

153

XX. Reed Solomon Codec Compiler for Programmable Logic

Martin Langhammer

Kaytronics, Inc.

405 Britannia Rd. E. #206
Mississauga, Ontario, Canada

L4Z 3E6

This paper describes the use and results of a Reed Solomon codec macro generator optimized for
programmable logic. The design of several differing codecs is detailed, along with analysis of resource
requirements, and codec performance.

1. INTRODUCTION

The Reed Solomon codec compiler described in this paper can generate Reed Solomon encoders and
decoders for a wide variety of codes, detailed below in the parameters section. Once the code has been
created by the utility, the top level HDL file may be compiled, targeting an Altera 10K device. Typically, and
encoder will compile, including fitting and routing, in less than one minute, and a decoder will compile
within five minutes. The utility program will also generate testcases, to functionally verify the cores created.

There are three Reed Solomon Codec macros; one encoder and two decoders, which are optimized for
different size/performance tradeoffs. The lower performance, or discrete decoder, receives a codeword,
calculates error locations and values, and writes out a corrected codeword. The higher performance, or
streaming decoder, continually reads in, and writes out, codewords. The streaming decoder uses only
marginally more logic, but requires a greater amout of memory, as the performance improvement is largely
due to system pipelining between decoder blocks.

2. PARAMETERS

A Reed Solomon code can be defined by the following parameters:

2.1 TOTAL NUMBER OF SYMBOLS PER CODEWORD

There may be up to 2m –1 number of symbols per codeword, also known as N. For the Reed Solomon
compiler, N must be greater than 3, subject to a minimum of R + 1.

2.2 NUMBER OF CHECK SYMBOLS

The compiler can support from 4 to 40 check symbols, or R, subject to a maximum of N – 1 check symbols.

2.3 NUMBER OF BITS PER SYMBOL

While any number of bits per symbol, m, can be defined for a Reed Solomon code, the valid range for the
compiler is 4 to 8 bits.

2.4 IRREDUCIBLE FIELD POLYNOMIAL

The field polynomial, or field, specifies the order of elements in a finite field. The size of the field is given

154

by m; and there are only a limited number of valid field polynomials for each field size. The field polynomial
is usually given by the system specification, but any valid field polynomial, for a given m, can be used by the
compiler. An additional utility, FIELD.EXE, will calculate all valid fields, for any m.

2.5 FIRST ROOT OF THE GENERATOR POLYNOMIAL

While the field polynomial describes the relationship of bits within a symbol, the first root of the generator
polynomial describes the relationship between symbols. The generator polynomial is uses to create the check
symbols during encoding. The range of genstart supported by the compiler is from 0 to 2m – 1 – R.

3. DESIGN FLOW

Using the parameters described in section II, DOS utilities are used to generate plug-in files for the HDL
architectural framework design files. The utility for generating the encoder is ENCRSV3; for the decoder,
DECRSV3; and both utilities are called with the parameters in the order listed in section II. The utilities will
perform checking to ensure that the parameters are in the correct ranges, and that the RS code is valid for the
parameter combination. The utilities also create testcases for the RS codecs created, so that they may be
immediately functionally tested.

After the utilities are run, the toplevel HDL for the desired function can be compiled, either as a standalone
design, or as part of a larger system design.

4. RESOURCE REQUIREMENTS

The number of resources required is largely dependant on m, and R. The number of symbols per codeword
has no effect on the amount of logic
required for the decoders, as storage for the received symbols is contained in the embedded memory blocks
in the Altera 10K devices.

The encoder requires very few logic cells, and no memory blocks. The size of the encoder scales linearly
with either m, or R. Figure I shows the size of an encoder, with varying R, for m = 8.

FIGURE I

The decoders scale geometrically with varying m and R, although there is a roughly linear relationship
between the discrete and streaming versions of a decoder, for a given m and R. In addition to the logic, a
discrete decoder will require two embedded memory blocks, and the streaming decoder five memory blocks.

0

100

200

300

400

500

4 8 16 32
R

LC
s

155

A further memory block is required if the first root of the generator polynomial is greater than zero. Figure II
shows the size of decoders for varying R, for m = 8.

 FIGURE II

5. CALCULATING SYSTEM PERFORMANCE

The performance of the encoder is dependent on m and R, as well as the routing and fitting of the device. It
is usually possible to achieve a 40 MHz system clock speed with most parameter combinations, which means
that the encoder will generally out perform the decoder. As the encoder produces one symbol per clock cycle,
the throughput rate is the same as the system clock rate.

System performance of the decoders is dependent on system clock rate, as well as RS code selected. A
minimum, and maximum number of cycles will always be required to process a codeword, depending on N
and R. If less than the maximum number of errors, t, is received, the number of clocks cycles required to
decode that codeword can be less than the maximum. In the case where the received codeword has more than
t errors, the decoder will output the received codeword, along the with DECFAIL flag asserted, after the
maximum number of cycles.

Both the discrete and streaming decoders have a size/performance tradeoff parameter, speed, which may be
set to “single”, or “double”. The amount of additional logic required to implement the “double” speed
internal processing element is minimal, in the range of 2m2 logic cells. The speed parameter will always
increase the performance of the discrete decoder, but may not have any effect on the throughput of the
streaming decoder.

Throughput of the decoder will generally be maximized when N is at maximum allowable value for the code
(2m-1).

5.1 DISCRETE DECODER

When speed is “single”, the maximum latency for the discrete decoder, which includes reading in the
received codeword, and writing out the corrected codeword is:

233 RN + (1)

For larger values of R, the second term will quickly become the dominant one.

 When speed is “double”, the maximum latency for the discrete decoder is:

27.13 RN + (2)

0

1000

2000

3000

4000

5000

4 8 16 32

156

For values of R less than 14, up to an additional 40 cycles of latency may be required for decoding. For
greater values of R, the latency may be slightly less.

Figure III shows the way in which the parameters N and R, as well as speed, affect the throughput of the
discrete decoder. For small values of R, N and speed have very little effect on the performance of the decoder.

 FIGURE III

As the value of R increases, the value of N becomes very important to the system throughput. This is because
system throughput is measured in symbols per unit time, and as R increases, the contribution of N to the
latency becomes much less significant. The throughput of the decoder, for larger R, is almost proportional to
N. As R increases, the effect of the speed parameter can be easily determined from (1) and (2) above; up to
a 50% performance increase can be effected with speed set to “double”.

5.2 STREAMING DECODER

When speed is “single”, the maximum latency for the streaming decoder, per codeword, is:

() (){ }23,max RRN + (3)

When speed is “double”, the maximum latency for the streaming decoder, per codeword, is:

() (){ }27.1,max RRN + (4)

Again, as with the discrete decoder, the latency may vary slightly (up to 40 cycles), depending on R.

0

2

4

6

8

10

12

4 8 16 32

single, N=
100
double, N =
100
single, N =
200
double, N =
200

157

FIGURE IV

Figure IV shows how varying N and R affect performance. The larger the R, the greater the effect of either
increasing N, or changing the speed parameter to “double”.

The system clock frequency remains relatively constant for a particular m, and varies only slightly with m.

0

5

10

15

20

25

30

35

40

4 8 16 32

single, N=
100
double, N =
100
single, N =
200
double, N =
200

158

CONCLUSIONS

High performance Reed Solomon encoders and decoders can easily be designed with fully parameterized
design tools. These Reed Solomon cores can then be synthesized into programmable logic, resulting in the
same order, or higher performance, than standard (ASSP) devices.

Given the RS parameters, core size and performance can readily be estimated, prior to synthesis.

REFERENCES

1. S.B. Wicker, V.K. Bhargava, editors, Reed-Solomon Codes and their Applications, IEEE Press, New

York, 1994

2. “Hammer Cores Reed Solomon Encoders and Decoders Data Sheet”, HammerCores,

www.hammercores.com

