
1

For questions or comments, please contact Jordon Inkeles, DSP Marketing

Engineers have long developed DSP algorithms using floating point due to the wide dynamic

range. Often in C using float or double type designation or within Mathworks MATLAB

modeling environment. However, when it comes to implementing DSP algorithms in HW,

the algorithms are most often turned into fixed point algorithms. This conversion can take

weeks or months and lead to trade-offs in the algorithm. The reason for the conversion is the

inability for HW to implement Floating Point in a cost efficient manner while maintaining

adequate performance. Altera has been working to solve this problem for some time and

have developed a powerful new floating point design flow for FPGAs.

So, in this webcast we will start with the basics of floating point. Then we then discuss

options for implementing floating point DSP, this includes CPUs DSPs, GPUs, and FPGAs.

Next we will discuss the innovations Altera has made to achieve, cost-effective high-

performance Floating point DSP in an FPGA, we will then walk through Altera’ s DSP

Builder tool and finally wrap-up with a couple examples and validation conducted by BDTI,

one of the leaders in independent DSP analysis.

If you are well-versed in floating point notation, IEEE floating point standard, and the basics

of floating point arithmetic. Please feel free to jump to slide 11, and skip the first section

“Floating Point Overview”

2

Let’s begin with the Floating Point Overview

3

What is Floating Point? It’s easiest to start with fixed point. A Fixed point number is simply

the computer representation of an integer. So, floating point is the computer representation

of a real number. Let’s look at the two examples. One thousand two hundred and fifty is a

number that can be represented in fixed point decimal with 4 digits. If the number has a

fractional portion, like in our second example, .357, you can represent the number in

scientific notation, once normalized this is essentially a floating point representation of the

number

A floating point number has several components: a matissa, an exponent and radix or base.

Which for computers is typically is binary or base 2. But this wasn’t always the case. Let’s

have some fun and take a quick tour of the history of floating point as described in the

handbook for floating point arithmetic, a great book if you don’t have it.

4

Scientific notation or floating point representation of numbers can be seen dating all the way

back to the Babylonian era with the square root of 2 with a radix of 60. The slide rule,

invented in the sixteen hundreds, was also a form of floating point. While this was long

before the computer era, some of the earliest computers did use floating point. For example,

the Z3 computer used a radix 2 a 14-bit mantissa, a 7 bit exponent and 1-signed bit.

The Setun, developed in Russia, used a Radix 3. The IBM 360 main frame used radix 16. In

1980, the PC market was taking off and Intel developed the 8087 math coprocessor for use

with it x86 CPUs. This was able to implement fifty thousand floating point operations per

second. Later x486 and pentium became one of the first CPUs to integrate a Floating Point

unit on the same die.

As floating point became more pervasive, as in desktop computers, it was clear there needed

to be a standard.

….Other notes…..

IBM was a main frame

Motorola had equivalent FPU

1993 Intel Pentium (include FPU)

5

In 1985, IEEE created the first widely accepted standard for floating point numbers. The

standard was originally developed for binary numbers but subsequently updated in 1987 to

include decimal and other bases. In 2008, the standard added quadruple floating point and

standardized on the fused multiply-add operation.

The standard gave accuracy, reliability and portability for the representation of numbers in

computers. The consistent format, which you can see in the pink and green diagram show

how many bits are allocated to each portion of the floating point number. For single

precision, there are 32 total bits, 23 bits for the mantissa, 8 for the exponent and 1-signed bit.

There is also an encoding scheme for the standard. For example, there is an implicit 1 in

front of the mantissa leading to 24 actual bits of precision and in order to have a negative

exponent, the exponent is biased by 127. For example, if you wanted to represent and

exponent of 3 you would actually use 130 (127+3). That leaves 1-127 to represent negative

exponents.

In the table you can see the different formats. The most popular being single precision and

double precision. You may also hear single extended and double extended, they aren’t

shown in the table.

6

To understand why floating point is more challenging to implement in HW than fixed point,
we can look at a few examples. For the sake of simplicity we use the decimal format, The
first example is floating point addition. When adding two floating point numbers, the
exponents must be the same, if they are not, the decimal point needs to be shifted. This is
called demoralization. In the example shown, 1.05…. times 10 to the three….is converted
to…. point 0 1 0 5 times 10 to the 5. Once the exponents are the same then you can add the
mantissas and carry the exponent. However, in the right most addition example, the two least
significant bits were dropped as part of the denormalization. this maybe the case if you
don’t have enough bits of precision to keep them. This shows that denormalization can lower
your precision. This is an example why double precision with more bits in the signficand is
more accurate that single precision. It also shows that not all numbers can be represented in
computers exactly as they are but floating point provides the best representation given the
bits of precision.

In the multiplication example, the mantissas are multiplied and the exponents are added.

The IEEE standard also covers other aspects including rounding, numbers that need a special
designation…. like infinity, normalization and denormalization… and over and under flows.

While floating-point addition and multiplication are both commutative (a + b = b + a). they
are not necessarily associative. That is, (a + b) then added c is not necessarily equal to (b +
c) then added to a. The order matters… this is due to various factors including rounding
and/or de normalization.

7

http://en.wikipedia.org/wiki/Commutative
http://en.wikipedia.org/wiki/Associative

Given the added complexity of floating point arithmetic in a computer, there must be a good
reason to use floating point vs. Fixed point. The reason is dynamic range, or the ability to
represent very large and very small numbers at the same time. However, floating point
comes at the expense of precision. For example, a 32-bit fixed point number has better
precision that a 32-bit floating point number. This is due to all 32 bits in the fixed point
number being used for the mantissa and only 23 bits being used for the mantissa in the
floating point example. The floating point number needs some of the bits to communicate the
exponent, the exponent on the other hand is what gives the dynamic range.

Lets again use an example using decimal numbers to clarify. In example 1, we want to
create the largest number we can using only 3-digits. That leads us to 9 9 9 or nine hundred
and ninety-nine. Now we want to create the largest number we can using floating point with
the same 3 digits. I have arbitrarily chosen two of the digits for the mantissa 9 9 and one
digit for exponent 9. In this case, 9 9 9 would represent 99 times 10 to the 9 or 99Billion.
This is signficanly larger than 999. So using the same number of digits (or bits in binary),
floating point offers much larger numbers. We can also create a negative exponent to create
really small numbers in floating point. This is a simple example of greater dynamic range.

Let’s looks at example 2 and see where we loose precision when using floating point. Using
the same constraints of 3 digits in decimal. We try to represent the number 125. Very
straighforward in fixed point. Now let’s try and represent 125 in floating point. Using the
same number of digits for the mantissa and exponent as the last example. We can represent
12 times 10 to the 1 or 120, we can also represent 13 time 10 to the 1 or 130. but we can’t
represent 125, therefore we would need to round to 130 and loose some precision. If we had
another digit in the mantissa, we could represent 125.

8

9

Now that we have completed a refresher in floating point representation and arithmetic. Let’s

briefly look at some of the markets and applications that would benefit from floating point.

Military market, is the first that comes to mind…. Specifically radar and electronic warfare

are good candidates for floating point, this includes pulse doppler or more advanced

radar……. such as….. space time adaptive processing. Another example, is with MIMO

algorithms and beam-forming algorithms in the wireless market. Medical imaging and

specifically MRI and CT scans….. in addition to test and measurement applications

requiring very large FFTs would also benefit from floating point.

10

The High performance computing market…. who has long used CPUs to implement floating

point are very interested in accelerating their algorithms. Other examples include Motor

control in the industrial market. Towards the end of this webcast, I will briefly cover two

examples, a matrix inversion and a motor control design.

Let’s look at some of the implementation options for floating point DSP algorithms, this

includes CPUs, DSPs, GPUs, and of course FPGAs.

11

There have been limited options to implement floating point DSP algorithms, until recently. Let’s take look
at the options. The CPU with a Floating Point Unit is where most engineers have been implementing
floating point DSP algorithms. This is using the typical Von Neumann architectures in a Pentium, ARM or
PowerPC. The PowerPC was used extensively in radar designs for the past 10-15 years. However, the
performance was limited and peaked at a few GFLOPS per device. To implement higher performance you
often saw 10-15 CPUs on a single board, causing a challenge on how to partition your algorithm and
running into power constraints.

DSP processors are largely fixed point and not until recently had a real floating point solution. TI is trying
to change this with the new C66x multicore DSP processor that offers both fixed and floating DSP
capability. However, the floating point implementation is only a ¼ efficient in terms of multipliers
compared to implementing in fixed point. They claim about 150 GLOPS in single precision…. though this a
peak number and probably far the sustained GFLOP number

The rise of the GP GPU or general purpose graphics processing unit starts to provide some high
performance floating point capability. Nvidia who has been developing Graphics Processing Units for
desktops for years is adapting the technology for general purpose calculations. This requires an entirely new
software flow. For some time, engineers often represented their floating point arithmetic in terms
graphics…. or vertex and fragment shaders to take advantage of the floating point capability in GPUs. Then
Nvidia developed CUDA a few years ago to allow engineers to engage floating point capabilities of GPUs
without knowing about graphics. This is essentially the General Purpose – GPU. Nvidia claims their new
Nvidia Tesla series can hit 1 TFLOPS. The biggest challenge with GPUs, other than learning the new
software flow, is GPUs are very power hungry.

FGPAs have long been used for fixed point DSP algorithms…. given the inherent parallelism of FPGAs and
the large number of DSP blocks containing dedicated multipliers. Altera recently launched the floating
point compiler within the DSP Builder Advanced Block set tool. DSP Builder can be used for both fixed
and floating point algorithms and allow you to mix fixed and float within the same design. Using the new
floating point compiler from Altera, you can now achieve high performance floating point in an FGPA. An
example includes the Stratix V FPGA with a sustained ability to achieve over 1 Teraflops.

Let’s look at all these options in a table

12

The next slide shows a table comparing the implementation options. Let’s walk through the table. From a
performance perspective, GPGPUs and FPGAs will offer the highest performance floating point capability.
From a power perspective, the power hungry GPUs start to become a challenge. As we look at I/Os, DSP
Algorithms are very data intensive, the ability to move data on an off the chip is also a challenge, FPGAs
offer very high throughput….. transceivers from 3, 6, 11, and even 28Giga bits per second are supported.
For longevity, FPGA companies rarely…. if ever…. obsolete a product line as they can be used in broad
applications and typically don't have 100s of variants, which is not the case in many CPUs and DSPs. For a
complete system, the CPU offers the ability to often incorporate a complete system in a single device, not
typically the case for DSPs or GPUs as they both rely on a CPU for the control function as they handle the
data computations workload. An FPGA can host an entire system, in many cases, engineers implement a
CPU, or many CPUs, on the same FPGA. The Nios II 32-bit RISC processor is a popular example. For tool
flow, CPUs and DSPs offer a simple to use c-based flow, GPUs offer a hybrid of C and HW or API based
flows. FPGA designs are typically implemented in Verilog or VHDL, but using the floating point compiler,
engineers can stay in the popular MATLAB/Simulink environment, often where the algorithms were
originally created. Altera’s DSP Builder tool automatically generates the performance and logic optimized
Verilog or VHDL.

In general, there may be several factors when choosing your architecture, but just looking at floating point
implementation…. FPGAs offer the best performance over CPUs and DSPs….. While offering the best
power advantages over GPUs. Most easily seen in GFLOPS/watt

http://cache.freescale.com/files/32bit/doc/data_sheet/MPC8641DEC.pdf

13

So what’s changed, why is it now possible to efficiently and with high-performance

implement floating point DSP algorithms on an FGPA. FPGAs have certainly had their

challenges, traditionally floating point has required significantly more logic than fixed point,

more multipliers are required, and given the wider data path, the routing was often stressed

creating bottle necks and leading to low performance.

Let’s see how Altera has solved these challenges and now offers the most compelling

floating point implementation on the market.

14

Floating Point in Altera’s FPGAs

15

To overcome some of the traditional challenges of implementing floating point in an FGPA.

Altera made some significant Innovations.

On the tool flow…

Altera has made significant improvements to DSP builder including the floating point

compiler with fused datapath technology and enabled folding capability. This brings

floating point capability to all current Altera FPGAs.

On the silicon side….

Altera has improved the multiplier efficiency in the DSP Block by adding a native 27x27 bit

mode, perfect for implementing single precision floating point multiplication. If you

remember from the IEEE standard, the single precision type has a 23-bit mantissa that needs

to be multiplied, well within the 27x27 capability but not as efficient as chaining 18bit

multipliers together…. (as competing FPGAs have to do). In addition, Altera has a 54x54

mode to implement double precision floating point.

In addition to the improved multiplier efficiency, Altera has added significantly more

multipliers than previous generations.

Let’s look at some of these Innovations in more detail.

16

First is the fused-data path technology in the floating point compiler.

If we look at the IEEE754 floating point standard. It is not well suited for FPGAs, and using

this approach through-out the data path will lead to poor performance, and excessive routing

and logic usage.

Instead, Fused Datapath supporst IEEE754 only at the functional boundaries. Within a

function or datapath, the circuit design is optimized, which results in a “fusing” of various

floating point operations

For example, rather than using a 23-bit mantissa in the compiler. The fused datapath extends

it to the full 27 bits of the multiplier. This reduces the number of normalzizations and

denormalizations required. By taking advantage of the extended precision capability of the

multiplier, significantly less logic resources can be used.

17

A simpler example of the fused datapath technoloy can be seen by looking at a vector dot-

product. This function is fundamental in many floating point processing algorithms, such as

in matrix inversion or matrix multiplication.

Note how many normalizations and denormalizations can be removed by extending the

mantissa size. All multiplier products are denormalized to the largest exponent… plus some

overhead depending upon adder tree size.. Then the adder tree…. sums all results. The end

result is normalized. All the intermediate steps do not need the normalization and

denormalization steps, as the extra mantissa bits compensates for the removed intermediate

steps. For large vector sizes, the fused data path technology can reduce about ½ of the logic

required in a DSP algorithm which also boosts performance as less routing is needed.

18

19

Another Innovation is ...folding.. This can be automatically implemented in the floating point

flow within DSP Builder.

The purpose of this feature is automaticly provide resource savings by sharing underutilised

‘functional units’ (multipliers, registers, adders, memories, and so on….

It allows the engineer to create simple, parameterisable design without wasting resources.

•Folding – or time-division multiplexing – could obviously be done by hand; but it typically

would need to be redone if the parameterisation (number of channels, ratio of clock to

sample rate, etc) changed.

from this chart… we can see the impact of the silicon innovations… Altera has

implemented.

Altera multiplier densities have been progressively increasing with each successive family.

However, note how the single precision multiplier density has increased over six times from

the Stratix IV family to the Stratix V family, and offers the highest single precision FPGA

multiplier density in the industry. This is due to the native 27x27 multiplier mode available

in the 28nm variable precision DSP block …. as well as…. an overall increase in DSPblocks

per device for 28nm fpga families.

21

We started the webcast by looking at the IEEE floating point standard and basic arithmetic,

then we looked at some options and trade-offs of implementing floating point in CPUs,

DSPs, GPUs and FPGAS, and how Altera has overcome some of the challenges of

implementing floating point algorithms through significant innovations. Let’s now….. look

at the actual too flow.

Altera’s floating point DSP tool flow is implemented using the DSP Builder Advanced

Block set within the MATLAB/Simulink environment. We will show the tool flow then

provide some quick examples.

22

23

The floating point compiler using the Fused Datapath technology is embedded within

Altera’s DSP Builder advanced block set using a Simulink front end and design

environment. Simulink is a Mathworks product, purchased separately.

24

MathWorks provides a top-down solution where one can design and test the entire system

modeling the DSP and control logic component interactions. The early detection of design

flaws results in

reduced risk of design failure and reduced time-to-market.

It allows the designer to use the same test bench for the simulation as the final FPGA

implementation.

25

Matlab is often the starting point for system and algorithmic design. It is used to simulate

and model system operation. Using DSPBuilder allows the same simulation to be used as the

testbench… for the FPGA development.

26

Simulink is a graphical extension to matlab allowing schematic entry and visualization.

Unlike Matlab, Simulink has the concept of clock cycles, which is needed for hardware

implementation. It allows the user to describe the level of parallelism in the design.

27

Simulink consists of a number of libraries of building blocks… from which designs can be

built and tested.

DSP Builder is shipped with two library add-ons to the Matlab/simulink tools encapsulating

two preferences for design methodology – a WYSIWYG-style giving explicit control over

pipelining …and reset-and-enable signals in the Classic or Standard blockset, and an

abstracted, higher-level style in the Advanced blockset, which allows the tool freedom for

automatic optimization and pipelining.

28

Both block-sets generate HDL, provide automatic verification… that an RTL Simulation of

the HDL generated… matches the Simulink simulation, and generate Quartus projects and

Qsys integration files.

The Classic blockset also provides tools for Simulink-driven hardware simulation and

SignalTap signal capture

29

The design can be created using IP blocks for common functions like filters, NCOs, saturate and

truncate blocks. Or the engineer can build their designs out of primitive blocks, such as multiplers,

adders, muxes, delay blocks, and so forth. Or any combination – in any case, all design optimizations

are applied across the designs.

30

Changing FPGA device famile is a simple as selecting the family and speed grade, or even a specific

device. The DSPBuilder tool has access to the timing models of each device in Quartus, which allows

the tool to perform device specific optimizations. This facilitates design migration to newer Altera

devices.

31

The designer specifies the desired clock frequency. The tool is capable of building designs with

performance on par with the best hand-optimized HDL implementations.

32

In this case, the tool closes timing with a worst case clock rate of 408 MHz, as confirmed by the

Quartus II compile.

Math.h functions are the simple operations you would expect in the simple ‘C’ library

math.h – trigonometric, log, exponent, inverse square root etc as well as basic operators such

as divide.

The implementation is multiplier based, since Altera FPGAs have an abundance of high

precision multipliers. Traditionally CORDIC implementations have been used for such

operations – but the logic for this choice is based on the outdated ASIC idea that logic is

very cheap and multipliers relatively expensive. For floating point operations on FPGA,

multiplications are now cheap and have the advantages of predicable performance, low

power and low latency. Contrary to accepted wisdom, the multi-stage CORDIC approach is

a highly inefficient method to build these functions.

The comprehensive library support within DSPBuilder Advance Blockset allows customers

to build large, complex and highly optimized floating point datapaths.

Fused Datapath has been integrated into Altera’s DSPBuilder Advanced Blockset toolflow.

Complex equations can be easily implemented in DSPBuilder blockset within Mathworks’s

Simulink environment. This allows for easy fixed and floating point simulation as well as

FPGA implementation of engineer designs.

DSPBuilder supports complex numbers, in fixed point or single or double precision. The

variable types are inherited, unless overridden by the engineer.

If we look under the subsystem doing the simple math… we note how floating point

complex types – both single and double – are used in conjunction with fixed point types. The

tool then offers a single environment for building mixed floating and fixed point designs,

and offers abstraction of complex and vectors making design simple and productive. All the

issues of dealing with mantissa, exponents, normalizations and special conditions are

abstracted away, just as when using a floating point software flow.

37

For While looping blocks are provided to allow for control functions in DSP Builder.

38

These loop blocks can be nested to provide for complex looping behaviour, similar to

software constructs.

Now let’s take a look at two examples, Motor Control design and a matrix inversion

function. Here we have a motor control design. If we look at a field orientated control

algorithm optimized in an FPGA, you can see the FGPA can manage nearly the whole

system. Due to the wide dynamic range needed in the design, single precision floating point

was used. Let’s look at the advantages folding brought to resource utilization.

39

This slide shows the significant impact that the “automatic folding” capability within Altea’s

DSP Builder Advanced Block Set can have on a design. The motor control design was

implemented in floating point with and without folding. With folding… the logic usage

dropped by 70% and multiplier usage dropped by 84%. As with any time division

multiplexing design, the latency also increased. The details of this design can be found in an

Altera white paper titled “Optimize Motor Control Designs with an Integrated FPGA Design

Flow “

40

The highly parameterized single precision matrix inversion example, uses a Cholesky

decomposition, with forward and back substitution. The goal was to determine the large

matrix inversion possible and the performance available in Altera’ s Stratix IV and Arria II

GX FGPAs. The example used readily available off the shelf tools and was benchmarked by

BDTI to determine performance, efficiency and ease-of-use.

41

This slides highlight the results of the example using the Stratix IV and Arria II GX device

family. Stratix IV could achieve a large matrix size of 240x240 with a vector size of 60. The

sustained throughput was over 3000 matrices per second. Arria II also had strong

performance. The details of the matrix inversion example are available in BDTIs White

paper titled “An independent analysis of Altera’s FPGA floating point DSP design flow”

available on www.altera.com/floatingpoint

42

43

BDTI’s White Paper walks through matrix inversion design example and validates the

FPGA performance and efficiencly. They also discuss the tool flow. Again, you can

download the white paper at www.altera.com/ floating point

44

First, Thank you for sticking around to the end of the webcast. I simply wanted to re-cap all

that we touched on. We started with an overview of floating point, then discussed the

different floating point options, then discussed how Altera’s significant innovations in DSP

Builder led to high-performance and efficient floating flow. We then walked through the

flow and showed a couple examples: Motor Control and matrix inversion. For more

information, please see the BDTI white paper and online training …Altera offers for floating

point. To get started with DSP Builder, please contact your local sale rep for an evaluation

license.

45

46

