
MEMORYmaster � User’s Guide
PRE-PRODUCTION
For the latest version of this document, check

the User area on Actel’s website at:

http://www.actel.com/user
WindowsNT� and UNIX Environments

Actel Corporation, Sunnyvale, CA 94086
© 1999 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5579017

Release: June 1999

No part of this document may be copied or reproduced in any form or by any
means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims
any implied warranties of merchantability or fitness for a particular purpose.
Information in this document is subject to change without notice.

Actel assumes no responsibility for any errors that may appear in this docu-
ment.

This document contains confidential proprietary information that is not to be
disclosed to any unauthorized person without prior written consent of
Actel Corporation.

Trademarks
Actel and the Actel logotype are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of
Adobe Systems, Inc.

Cadence is a registered trademark of Cadence Design Systems, Inc.

Mentor Graphics is registered trademark of Mentor Graphics, Inc.

Synopsys is a registered trademark of Synopsys, Inc.

MEMORYmaster is a trademark of Gatefield, Inc.

ASICmaster is a trademark of Gatefield, Inc.

Verilog is a registered trademark of Open Verilog International.

Windows is a registered trademark and Windows NT is a trademark of
Microsoft Corporation in the U.S. and other countries.

All other products or brand names mentioned are trademarks or registered
trademarks of their respective holders.
ii

Table of Contents

Document Organization . i

Document Assumptions . ii

ProASIC Series Manuals . ii

1 Embedded MEMORYmaster. 1
Embedded Memory . 1

Embedded Memory Configurations 2

MEMORYmaster Main Window. 5

Generating Embedded Memories 7

Integrating Memories into a Design 10

Embedded Memory Examples 15

Multiple Memory Generation and Integration 19

2 Distributed MEMORYmaster 21
Distributed Memory Architecture 21

Determining Tile Usage 24

Distributed Memory Generation and Instantiation 27

A Timing for Distributed Memories 31
Level-sensitive Register File 31

Level Sensitive FIFO . 34

3 Using Multiple Memories in a Design 35
Manual Placement of Multiple Memories 39

Multiple Instances of Various Memories. 40

Programmable Flag in FIFOs 42

B Product Support . 43
Actel U.S. Toll-Free Line 43

Customer Service . 43

Customer Applications Center 44

Guru Automated Technical Support 44

Web Site . 44
iii

FTP Site . 45

Electronic Mail . 45

Worldwide Sales Offices 46

List of Figures

Embedded Memory and Standard Logic Cells 1

MEMORYmaster Main Window 5

MEMORYmaster Window Ports Tab 6

ASICmaster Toolbar . 8

ASICmaster Tools Dialog Box 8

Working Directory File Browser 9

MEMORYmaster Main Window 16

Schematic of a 2x2 Register File 22

Schematic of a 2x2 FIFO . 23

Horizontal Memory . 25

Vertical Memory . 26

Design Example . 27

Distributed MEMORYmaster User Interface 28

Level-sensitive Mode Timing Diagram 31

Edge-triggered Mode Timing Diagram 32

Edge-triggered FIFO . 34

Sample Design . 35

MEMORYmaster Window Showing a Sample FIFO 36

Sample Memory Placement 38

Sample FIFO Placement . 40
v

List of Tables

Embedded Memory Block Configurations 2

Possible RAM Locations for the A500K Family 13

Maximum FIFO Dimensions 24

Decoders Sizes . 25

RAM . 41

FIFO . 41
vii

Introduction

The MEMORYmaster User’s Guide contains information and procedures
for using the MEMORYmaster software to create embedded and
distributed memories for use in ProASIC devices. This manual also
includes information about all the possible configurations of RAMs and
FIFOs that MEMORYmaster can generate. Furthermore, this manual
includes brief examples of how to instantiate the generated memories into
a design. Also information about timing for distributed memories as well
as using multiple memories in a design is presented.

MEMORYmaster includes two independent tools: The Embedded
MEMORYmaster generates memories using embedded memory blocks,
and the Distributed MEMORYmaster generates distributed memories.

Document Organization
The MEMORYmaster User’s Guide is divided into the following chapters:

Chapter 1- Embedded MEMORYmaster lists all the possible
configurations of embedded RAMs and FIFOs that MEMORYmaster can
generate. It also describes using the memory generator and illustrates the
different steps that are followed in two examples of a RAM and a FIFO.

Chapter 2- Distributed MEMORYmaster describes the architecture of
distributed RAMs and FIFOs that are implemented in the logic tiles of
ProASIC devices. The command line user interface is described and its use
is illustrated on an example of a distributed RAM.

Appendix A - Timing for Distributed Memories presents the timing
parameters for Level sensitive, Edge-triggered Register Files and FIFOs.

Appendix B - Using Multiple Memories in a Design provides an
example of a design using one FIFO for receiving and another for
sending data. Generation and integration of the FIFOs is also shown.
Particular attention is given to their placement in embedded memory
blocks of a device.

Appendix C - Product Support provides information about contacting
Actel for customer and technical support.
i

Introduction
Document Assumptions
The information in this guide is based on the following assumptions:

1. You have installed the ASICmaster software.

2. You are familiar with the principles of digital design.

3. You are familiar with UNIX and Microsoft Windows NT operating
systems

ProASIC Series Manuals
This book is a part of the ProASIC series of manuals. All books in the
series are listed below. Users can order these publications through an
Actel sales representative.

ASICmaster Installation and Licensing Guide provides information and
procedures for installing and licensing the ASICmaster software.

ASICmaster User’s Guide provides information about the design flow
for creating designs for ProASIC device. It includes information and
procedures for placing and routing designs and also information on
using timing constraints.

MEMORYmaster User’s Guide provides information and procedures for
generating embedded and distributed memories and instantiating then
into a design.

ProASIC Macro Library Guide provides descriptions of ProASIC library
elements for Actel’s ProASIC device families. Symbols, truth tables, and
timing parameters are included for all macros.

ProASIC Interface Guide provides information and procedures for
designing Actel’s ProASIC devices in Exemplar synthesis, Synopsys
synthesis, Verilog simulation, and VHDL simulation environments.
ii

1
Embedded MEMORYmaster

This chapter describes how to use the Embedded MEMORYmaster to
generate embedded memories for ProASIC devices, instantiate the
memory into the design source code, simulate and synthesize the design,
and import the netlist into ASICmaster. It includes a description of
ProASIC dedicated memory blocks and all their possible configurations.

Embedded Memory
ProASIC devices contain dedicated embedded memory blocks along with
standard logic cells, called tiles as shown in the upper section of the ASIC
master Viewer in Figure 1-1. below.

Figure 1-1. Embedded Memory and Standard Logic Cells

Each block can be configured to one of 24 functions as shown in Table
1-1 on page 2. Each memory block is 256 words deep and 9 bits wide,

Embedded
Memory

Tiles
1

Chapter 1: Embedded MEMORYmaster
for a total of 2304 bits of memory per basic memory block. Every
memory block may be configured independently as two-port SRAM or
as a FIFO. There are separate and independent read and write ports
allowing simultaneous dual port access. The ports can be either
synchronous or asynchronous, and each can be configured separately.
This allows the option of using an asynchronous write and a
synchronous read port. Synchronous output ports can be configured to
either act like a transparent synchronous port or like a pipelined
synchronous port. Additionally in all modes, a parity bit (9th bit) can
be checked or generated within the memory. Parity check can be
performed while writing and reading data without using additional
logic. The result of these checks is shown in two independent signals
WPE and RPE (Write Parity Error and Read Parity Error). Parity can also
be generated while reading data.

Embedded Memory Configurations
If allconfiguration possibilities are added up, 24 different memory modes
can be configured.

Table 1-1. Embedded Memory Block Configurations

Type Write Access Read Access Parity
Library Cell

Name

RAM Asynchronous Asynchronous Transparent Checked RAM256x9AA

RAM Asynchronous Asynchronous Transparent Generated RAM256x9AAP

RAM Asynchronous Synchronous Transparent Checked RAM256x9AST

RAM Asynchronous Synchronous Transparent Generated RAM256x9ASTP

RAM Asynchronous Synchronous Pipelined Checked RAM256x9ASR

RAM Asynchronous Synchronous Pipelined Generated RAM256x9ASRP

RAM Synchronous Asynchronous Transparent Checked RAM256x9SA
2

Embedded Memory Configurations
The generation of some additional status signals besides the standard
“EMPTY” and “FULL” signals is also built into the FIFOs. By providing a
level signal, the circuit also generates signals that indicate whether the
FIFO is filled less, equally filled, and filled higher than the specified level.
For a description of how to connect the ports, and what function they
have in each configuration see the ProASIC Macro Library Guide.

RAM Synchronous Asynchronous Transparent Generated RAM256x9SAP

RAM Synchronous Synchronous Transparent Checked RAM256x9SST

RAM Synchronous Synchronous Transparent Generated RAM256x9SSTP

RAM Synchronous Synchronous Pipelined Checked RAM256x9SSR

RAM Synchronous Synchronous Pipelined Generated RAM256x9SSRP

FIFO Asynchronous Asynchronous Transparent Checked FIFO256x9AA

FIFO Asynchronous Asynchronous Transparent Generated FIFO256x9AAP

FIFO Asynchronous Synchronous Transparent Checked FIFO256x9AST

FIFO Asynchronous Synchronous Transparent Generated FIFO256x9ASTP

FIFO Asynchronous Synchronous Pipelined Checked FIFO256x9ASR

FIFO Asynchronous Synchronous Pipelined Generated FIFO256x9ASRP

FIFO Synchronous Asynchronous Transparent Checked FIFO256x9SA

FIFO Synchronous Asynchronous Transparent Generated FIFO256x9SAP

FIFO Synchronous Synchronous Transparent Checked FIFO256x9SST

FIFO Synchronous Synchronous Transparent Generated FIFO256x9SSTP

FIFO Synchronous Synchronous Pipelined Checked FIFO256x9SSR

FIFO Synchronous Synchronous Pipelined Generated FIFO256x9SSRP

Table 1-1. Embedded Memory Block Configurations
3

Chapter 1: Embedded MEMORYmaster
Naming
Conventions

The HDL Models for each of the 24 possible configurations, are included
in the ProASIC simulation and synthesis library. The function and timing
of each model is described in detail in the ProASIC Macro Library Guide.
The modules are named according to the following convention:

<MEM-TYPE><256x9><WRITE-ACCESS><READ-ACCESS><PARITY>

<MEM-TYPE> := RAM or FIFO;
<WRITE-ACCESS> := A, S;

A := asynchronous;
S := synchronous;

<READ-ACCESS> := A, ST, SR;
A := asynchronous;
ST := synchronous transparent;
SR := synchronous registered;

<PARITY> := P or nothing;
P := parity will be generated;
nothing := parity will be checked;

For example, the name of a FIFO with an asynchronous write and a
synchronous transparent read mode with parity check is:

FIFO256x9AST.

Or a synchronous registered RAM with parity bit generation:

RAM256x9SSRP.
4

MEMORYmaster Main Window
MEMORYmaster Main Window
When you invoke MEMORYmaster, the main window, shown in Figure
1-2, is displayed. From this window, the format of embedded memory,
the target ProASIC device and the configuration of the memory are
selected.

Figure 1-2. MEMORYmaster Main Window

The Configuration tab allows users to name the memory block currently
being created and to select its parameters. Wide and deep RAMs and
FIFOs can be created with a variety of options for access mode, parity, etc.
One option available only for RAMs, is to write enable an individual byte
that is wider than 8 bits. This is accomplished by enabling the appropriate
write flag. One option only available for FIFOs is the ability to select the
level signal as either static or dynamic. This level signal is used to set
programmable flags. The value of this signal determines the occurrence of
the EQTH and GEQTH signals.
5

Chapter 1: Embedded MEMORYmaster
The Resource Usage section is updated as changes are made to reflect the
number of memory and logic tiles that the memory block requires in its
implementation. The basic embedded 256x9 bit RAM or FIFO requires
no logic core tiles. Logic core tiles are required for implementing
embedded memories that are wider and/or deeper than 256x9 bit. The use
of core resources is also dependent on the user’s choice to generate a
memory optimized for speed or area. Figure 1-2, shows a memory that
was optimized for area. Optimizing for area required eight memory
blocks and 29 core tiles. If it is optimized for speed the FIFO would be
mapped to 8 memory blocks and 138 core tiles. Be aware that
MEMORYmaster is not part specific. Users must ensure that the target
device has sufficient memory resources to accommodate the memory
blocks. For example, the A500K130 has 20 basic 256x9 bit memory
resources available. If a 512x32 bit FIFO is defined using
MEMORYmaster, then every instance of that memory will use eight of
the available memory resources.

The Ports tab, shown in Figure 1-3, allows the specification of names
for ports used in the netlist. Default names are automatically provided.
Only those signal fields relevant to the selected memory type will be
active.
6

Generating Embedded Memories
Figure 1-3. MEMORYmaster Window Ports Tab

The bus switch next to the Data In and Data Out fields allows users to
specify whether to treat these signals as bus or signal bit ports. Users can
also select whether control signals are active high or active low. The byte
enable button allows users to select any arbitrary byte in the RAM (for
word width > 8) as active during a write cycle. If selected, the RAMs will
implement at most 8 bits of the word.

Generating Embedded Memories
MEMORYmaster generates memories in Verilog, VHDL or EDIF format.
One memory block or multiple blocks can be generated, and the blocks
may reside in one or more netlist files.

A constraints file, containing placement directives for each memory, is
also generated. The constraint data for each block may reside in one or
more constraint files.

Use the following procedure to generate an embedded memory with
Embedded MEMORYmaster.
7

Chapter 1: Embedded MEMORYmaster
1. Invoke Embedded Memorymaster.

PC

Select ASICmaster5p1 from the ASICmaster menu under programs in
the Start menu

UNIX

Type the following command at the prompt:

asicmaster

2. From the ASICmaster launch Window select the Toolbar click the
Tools button.

Figure 1-4. ASICmaster Toolbar

3. Click the Build Embedded Memories button from the ASICmaster
Tools dialog box shown in Figure 1-5 on page 8.
8

Generating Embedded Memories
Figure 1-5. ASICmaster Tools Dialog Box

Note: On the PC you must first set a working directory for your
design and click the Select button as shown in Figure 1-6. On
Unix simply click Build Embedded Memories and the
Embedded MEMORYmaster Main window is displayed.

Figure 1-6. Working Directory File Browser
9

Chapter 1: Embedded MEMORYmaster
4. Once the Embedded MEMORYmaster Main window is
displayed as shown in Figure 1-2 on page 5, click New. A new
memory configuration is created named mem1.

5. In the Output field, specify the format of the netlist to be
created.

6. On the Configuration tab, shown in Figure 1-2, name the
memory block currently being created in the Name field, and
select its parameters from the choices given.

7. On Ports tab, shown in Figure 1-3, specify the names for ports
used in the netlist. Default names are automatically provided.
Only those signal fields relevant to the selected memory type will
be active

8. When you are satisfied with the current settings, click the
Generate button. MEMORYmaster will create the netlist and
constraint files. To specify additional memory blocks, click the New
button. If the same netlist and constraint file names are used as in
a previous memory definition, the data for the new block will be
appended to those files.

Note: If the named files already exist, their contents will be
overwritten with the current memory data.

Integrating Memories into a Design
This section provides one example of how to instantiate a Verilog, and
a VHDL netlist, link it to a design.

Once MEMORYmaster has generated the needed memories you must
instantiate the netlist into your design before simulating and
synthesizing. The tool either generates a memory.v, memory.vhd or
memory.edif netlist file and a memory.gcf constraints file.
10

Integrating Memories into a Design
Verilog
Example RAM
512x32

The following is a Verilog netlist generated from MEMORYmaster for a
512x32 bit RAM:

`timescale 1ns/10ps

// type = RAM

// width = 32

// depth = 512

// output type = transparent

// parity control = ignore

// parity type = odd

module ram512x32(DO, CLOCK, DI, WRB, RDB, WADDR, RADDR);

output [31:0] DO;

input CLOCK;

input [31:0] DI;

input WRB;

input RDB;

input [8:0] WADDR;

input [8:0] RADDR;

...

The following is an example of how to instantiate a RAM512X32
module into a design:

ram512x32 MY_RAM_INST(.DO(data_out),.CLOCK(clk), .DI(data_in),
.WRB(wrb), .RDB(rdb),.WADDR(write_add), .RADDR(read_add));

After adding the instantiation of the memory into the Verilog source
code, the next step is to synthesize the design. Before synthesizing the
design, make sure that the “dont_touch” attribute is set on all
memories generated by MEMORYmaster. Refer to the documentation
included with your synthesis tool for further information.
11

Chapter 1: Embedded MEMORYmaster
VHDL RAM
Example

The following is a VHDL example of the previous generated memory:

entity ram512x32 is
port(DO :out std_logic_vector (31 downto 0);

CLOCK : in std_logic;
DI : in std_logic_vector (31 downto 0);
WRB : in std_logic;
RDB : in std_logic;
WADDR : in std_logic_vector (8 downto 0);
RADDR : in std_logic_vector (8 downto 0)
);

end ram512x32;

The entity describes the interface of the module that must be
instantiated into the VHDL design source code. Besides the actual
connection of the interface, VHDL requires an additional declaration of
the sub-module in the architecture. The following is an example of an
architecture including the declaration of the memory as a component:

architecture MY_DESIGN_STRUCTURE of MY_DESIGN is
component RAM512x32
port(DO : outstd_logic_vector (31 downto 0);

CLOCK : in std_logic;
DI : in std_logic_vector (31 downto 0);
WRB : in std_logic;
RDB : in std_logic;
WADDR : in std_logic_vector (8 downto 0);
RADDR : in std_logic_vector (8 downto 0)
);

end component;

begin
...

MY_RAM : RAM512x32 Port Map(DO =>data_out,
CLOCK =>clk,
DI =>data_in,
WRB =>wrb,
RDB => rdb,
WADDR => write_add,
RADDR => read_add
);

...
end MY_DESIGN_STRUCTURE;
12

Integrating Memories into a Design
Importing the
Netlist

After synthesis a design is translated into either a Verilog, VHDL or
EDIF netlist. The netlist includes all logic blocks as well as the
memories. To import the netlist file(s) into ASICmaster refer to the
ASICmaster User’s Guide. Placement information generated by
MEMORYmaster must be imported into ASICmaster as constraints. This
enables ASICmaster to place the memories automatically.

The placement constraints file contains statements such as the
following:

memory <mem_name> (
(M3 M1)
(M2 MO)
macros_to_place (<macro1> <macro2>)
)

MEMORYmaster may generate additional macros in the placement
contraints file to place the additional logic needed for deeper and or
wider RAMs/FIFOs.

Note: If you use these memory modules in a synthesis flow, ensure that
you set “dont_touch” attributes on the modules generated by
MEMORYmaster. Otherwise, the names of these modules may be
changed and ASICmaster cannot find the memory modules to be
placed in the netlist.

Table 1-2. Possible RAM Locations for the A500K Family

Part possible RAM locations formula

A500K050 (1,57), (17, 57), ..., (81, 57) x = 16*n+1; n= {0,1,2,3,4,5}; y = 57;

A500K130
(1,81), (17, 81), ..., (145,81) (1,89),
(17, 89), ..., (145,89)

x = 16*n+1; n= {0,1,2,3,4,5,6,7,8,9}
y = {81, 89}

A500K180
(1,97), (17,97), ..., (177, 97)
(1,105), (17,105), ..., (177, 105)

x = 16*n+1; n= {0,1,2,3,4,5,6,7,8,9,10,11}
y = {97, 105}

A500K270
(1,121), (17,121), ..., (209,121)
(1,129), (17,129), ..., (209,129)

x = 16*n+1; n=
{0,1,2,3,4,5,6,7,8,9,10,11,12,13}
y = {121, 129}
13

Chapter 1: Embedded MEMORYmaster
Manual
Memory
Placement

For manual placement, a constraints file must be created. The
following is an example of a manually created placement file for a
500k130 device.

set_location (1,81) <hier_instance_name>/M0;
set_location (1,89))<hier_instance_name>/M1;
set_location (33,89)<hier_instance_name>/M2;
set_location (33,81) <hier_instance_name>/M3;

The (x,y) coordinates changes for each device. If wrong coordinates
are entered, ASICmaster reports about wrong coordinates and displays
a list of valid coordinates for the selected device.
14

Embedded Memory Examples
Embedded Memory Examples
This section provides examples of how to generate memory and
integrate it into your design. These examples also briefly explain
simulation, synthesis and place and route for each example:

Example 1-
Two Port
Memory

This example demonstrates how to generate a two port RAM that is
1024 words deep by 8 bits wide with synchronous write and
asynchronous read and an even parity generation.

Generate the Memory

1. Invoke ASICmaster.

2. Click the Tools button. The ASICmaster tools dialog box is
displayed.

3. Click Build Embedded Memories. The MEMORYmaster main
window is displayed (see Figure 1-5 on page 8).

Note: On Windows NT, you need to selct a corking directory first.

4. Click the New button. All fields are activated.

5. Specify the name of memory in the name box. Use
“mem1024x8” for this example.

6. Specify RAM as the Type.

7. Specify Synchronous as the Write Access.

8. Specify Asynchronous as the Read Access.

9. Type 1024 as the Depth and 8 as the Width. (After selecting the
other required fields, the MEMORYmaster main window will appear
as in Figure 1-7 on page 16).

10. Specify Generate Even as the Parity.

11. If you would like to assign special names to memory ports,
click the Port Tab and enter the desired names.

12. Click the Generate button.
15

Chapter 1: Embedded MEMORYmaster
Figure 1-7. MEMORYmaster Main Window

Integrate the Memory into a Design

The following code shows how to instantiate the generated memory in
Verilog:

module Top_level(in,out clk,reset………..);
input in, clk reset;
output out;
....

mem1024x8 MEM1(.DI(wr_data), .DO(rd_data)……………);
// This is memory instantiation

always@(posedge clk or reset or in)
begin

....
end;

endmodule
16

Embedded Memory Examples
Simulate and Synthesize
After instantiating a memory into the design, you can simulate and
synthesize it. Memory models are included into the simulation and
synthesis libraries. Refer to the documentation included with your
simulation and synthesis tools for additional information. Make sure
that the “dont_touch” attribute is set on all memories generated by
MEMORYmaster during synthesis. The following is an example Verilog
simulation command:

verilog test_sim.v top_level.v mem1024x8.v –v $AMHOME/etc/
deskits/verilog/lib/A500K.v

You must link to the simulation libraries that are located under:
$AMHOME/etc/deskits/verilog/lib/A500K.v .

Place and Route
After synthesis, the netlist contains the embedded memories. For
automatic placement, use the constraints file (mem1024x8.gcf)
generated by MEMORYmaster. If automatic placement is used,
memories are placed in a line and can be placed and routed in
ASICMASTER. For manual placement, create a text file such as the
following, and read this file into ASICmaster:

set_location (1,81) MEM1/M0;
set_location (17,81) MEM1/M1;
set_location (33,81) MEM1/M2;
set_location (49,81) MEM1/M3;

Memory blocks can in any legal position. See Table 1-2 on page 13 for
legal position of memory blocks.

Example 2-
512x16 FIFO

This example demonstrates how to generate an asynchronous FIFO
that is 512 deep by 16 wide with FULL, EMPTY, and HALF FULL flags
and how to integrate it into a design.
17

Chapter 1: Embedded MEMORYmaster
Generate the FIFO
1. Invoke ASICmaster.

2. Click the Tools button. The ASICmaster tools dialog box is
displayed.

3. Click Build Embedded Memories. The MEMORYmaster main
window is displayed

4. Specify all required fields for the design. Specify static as the
FIFO Trigger Level and half depth for the programmable flag . Enter
width and depth. Select FIFO under Type field.

5. Click generate.

Instantiate the FIFO into the design

The following code shows how to instantiate the memory in Verilog:

module top_level (in,out clk,reset………..);
input in....;
........

FIFO512x16 rec_fifo(.DI(wr_data), .DO(rd_data)……………);
// This is fifo instantiation

always@(posedge clk or……..

........

endmodule

Simulate and Synthesize

After instantiating a FIFO into the design, you can simulate and
synthesize it. Memory models are included into the simulation and
synthesis libraries. Refer to the documentation included with your
simulation and synthesis tools for additional information. Make sure
that the “dont_touch” attribute is set on all memories generated by
MEMORYmaster during synthesis.
18

Multiple Memory Generation and Integration
The following is an example Verilog simulation command:

verilog test_sim.v top_level.v FIFO512x16.v –v $AMHOME/etc/
deskits/verilog/lib/A500K.v

You must link to the simulation libraries that are located under:
$AMHOME/etc/deskits/verilog/lib/A500K.v .

Place and Route

After synthesis, the netlist contains the embedded memories. For
automatic placement, use the constraints file (mem512x16.gcf)
generated by MEMORYmaster. If automatic placement is used, memories
are placed in a line and can be placed and routed in ASICMmaster. For
manual placement, create a text file such as the following and read this file
into ASICmaster:

set_location (1,81) MEM1/M0;
set_location (17,81) recfifo/M1;
set_location (33,81) recfifo/M2;
set_location (49,81) recfifo/M3;

Memory blocks can be in any legal position. See Table 1-2 on page 13
for legal position of memory blocks.

Multiple Memory Generation and Integration
If a design includes several memories with different sizes and access
modes, Actel recommends generating them all in one session of
MEMORYmaster. The embedded memories are automatically generated
and are accompanied by placement directives. ASICmaster uses these
directives to place the memories efficiently. Appendix B, “Using
Multiple Memories in a Design” on page 35, shows two examples of
designs using multiple memories and illustrates their placement in a
ProASIC device.
19

2
Distributed MEMORYmaster

This chapter describes how to use the Distributed MEMORYmaster to
create distributed memories for ProASIC device.

Distributed Memory Architecture
Distributed memory can be generated as a two port asynchronous register
file or as an asynchronous FIFO. Distributed memories are placed in the
logic tiles of the device. Therefore, these memory files are netlists
consisting of logic tiles and do not refer to the normal ProASIC memory
libraries.

The Register
File

The register file has independent read and write ports. The read port is
asynchronous so the read data is not clocked and is available a short time
after the read address changes. The write operation can be either level
sensitive or edge-sensitive. The schematic of a 2x2 memory is shown
in Figure 2-1 on page 22. The schematic is marked to show the words
(vertical slices), the bits (horizontal slices) and the decoders (one per
word). The register file memory requires 1 column per word and 2 rows
per bit plus from 1 to 3 rows for the necessary decoders.
21

Chapter 2: Distributed MEMORYmaster
Figure 2-1. Schematic of a 2x2 Register File

Distributed FIFO Distributed FIFO memory has independent read and write ports.
However, it has no address ports. Instead, the FIFO keeps track of the
addresses internally. The FIFO is organized with words in columns and
data bits in rows. The top row consists of the write addressing circuitry
22

Distributed Memory Architecture
and the “full” detection circuitry. The bottom row consists of the read
addressing circuitry and the “empty” detection circuitry. The FIFO
memory requires 2 columns per word plus an overhead for decoders and
flag generation that is a minimum of 3 columns. The FIFO also requires 1
row per bit plus an overhead of 2 rows. Figure 2-2 shows the
schematic of a 2x2 FIFO.

Figure 2-2. Schematic of a 2x2 FIFO

D

C

S
Q

A
B

Y

A
B

Y

Init

Write

Read

D Q

D Q

wData1

wData0

D

C

S
Q

A
B

Y

A
B

Y

D Q

D Q

D

C R

Q

D

C R

Q

A
B

Y

A
B

Y

D Q

D Q

D

C R

Q

D

C R

Q

rData1

rData0

A
B

Y

A
B

Y

A
B

Y

A
B

Y

A
B

Y

A
B

Y

empty

full
23

Chapter 2: Distributed MEMORYmaster
Determining Tile Usage
ProASIC parts tend to have more tiles horizontally. The choice of
orientation affects the allowable size of the memory. A horizontal
memory allows the maximum possible number of words, whereas a
vertical memory allows the maximum number of bits-per-word.
MEMORYmaster can create register files of up to 64 words on any
possible ProASIC device. Distributed memories are created using logic
tiles and they are generally slower and larger compared to embedded
RAM. Actel recommends that larger memories be implemented with
the embedded memories. The maximum distributed FIFO sizes in any
ProASIC device is 80 words. The maximum FIFO sizes are shown in
Table 2-1.

Table 2-1. Maximum FIFO Dimensions

Device Vertical Horizontal

Words Width Words Width

A500k050 64 (23) 46 (94) 64 (36) 30 (62)

A500k130 64 (29) 46 (158) 64 (62) 30 (78)

A500k180 64 (36) 46 (192) 64 (75) 30 (95)

A500k270 64 46 (222) 64 (80) 30 (118)
24

Determining Tile Usage
The orientation of the register file affects how it is placed. Horizontal
register files are placed with words in columns and bits in rows as shown
in Figure 2-3.

Figure 2-3. Horizontal Memory

The memory size is then the number-of-words wide by 2*number of bits
per word+decoder_size high. Alternatively, if the memory orientation is
vertical then the words are arranged in rows and the bits in columns. The
memory size is then 2*number of bits per word+decoder_size wide by
number-of-words high as shown in Figure 2-4 on page 26. The
decoder sizes are given in the following table:

Table 2-2. Decoders Sizes

Number of
Words

Decoder Size

2 ~ 4 1

5 ~ 8 2

9~64 3

Decoders

Core
2 * number_bits_per word

number_of_words
25

Chapter 2: Distributed MEMORYmaster
The following is a an example logic usage calculation for a vertical
RAM16x32:

Width: 2*number-of-bits-per-word+decoder_size = 2 * 32 + 3 = 67 tiles

Height: number-of-words = 16 = 16 tiles

Example RAM16x32 horizontal:

Width: number-of-words = 16 = 16 tiles

Height: 2*number-of-bits-per-word+decoder_size = 2 * 32 + 3 = 67 tiles

Figure 2-4. Vertical Memory

Finally, the tool displays the legal coordinates to place the memory if the
macro is not rotated or flipped. In this case a placement of the macro
between the coordinates (1,1) and (31,49) would cause no problem.

D
e

co
d

e
rs

C
o

re
2 * number_bits_per word

n
u

m
b

e
r_

o
f_

w
o

rd
s

26

Distributed Memory Generation and Instantiation
Distributed
Memory
Placement

To achieve the best timing and efficient placement, use the placement
constraints file generated by the Distributed MEMORYmaster. For more
information on constraint statements, refer to the ASICmaster User’s
Guide. To utilize this file, use the set_location constraint statement for
macros.

set_location (x,y) <mem_hier_name> <macro_name>;

Distributed
Memory Timing

Memory timing values are dependent on the memory size and the routing
to and from the memory. Since the memories are implemented as
ProASIC primitives, users can determine the timing characteristics of the
circuit by performing a backannotated timing analysis. In fact, to the
timing analyzer, the distributed memory looks like any other part of the
circuit and requires no special treatment. The first sections in Appendix A
explains the critical timing paths in each memory, and why these paths are
critical.

Distributed Memory Generation and Instantiation
Consider the following hierarchical design, which instantiates a 16x32
memory as shown in Table 2-5.

Figure 2-5. Design Example

TOP

block1 block2

ram16x32 block3

U1 U2

mem_inst

U3
27

Chapter 2: Distributed MEMORYmaster
Figure 2-6 shows how to generate a RAM of 16x32 using the
Distributed MEMORYmaster tool. Use the generated file to instantiate
the RAM into your design.

Figure 2-6. Distributed MEMORYmaster User Interface

Welcome to ASICmaster's Distributed MEMORYmaster Version
V5p1
(C) 1996-1999 Gatefield Corporation. All rights reserved.
Note: See the MEMORYmaster User Guide for detailed

information about this program and how to use it.
Please enter output format:

1 for verilog
2 for vhdl ?1

Type of module:
1 for 2-port asynchronous register file
2 for fifo
0 to quit? 1

Type of device:
1 for A500K050
2 for A500K130
3 for A500K180
4 for A500K270
0 to quit?1

Orientation of memory:
1 for horizontal
2 for vertical
0 to quit? 2

Cell name? ram16x32
Number of words (2...64)? 16
Number of data bits per word (2...46)? 32
Memory type:

'e' for edge triggered,
'l' for level-sensitve? e

Generating verilog file "ram16x32.v" in "/home1/users"
Generating gcf file "ram16x32.gcf" in "/home1/users"
Legal X: (1...31)
Legal Y: (1...49)
Done.
Type <cr> to close the window.
28

Distributed Memory Generation and Instantiation
Simulation and Synthesis
After instantiating the memory into the design, you can follow the
same design flow as for embedded memories. This memory is made of
logic cells and can be simulated by linking the simulation libraries. The
following is an example Verilog simulation command:

verilog test_sim.v top.v mem16x32.v -v $AMHOME/etc/deskits/
verilog/lib/A500K.v

The design can be synthesized, but the “dont_touch” attribute must be
set for memory blocks during synthesis.

Place and Route:

During place and route users must use placement constraints generated by
MEMORYmaster. The ram16x32.gcf file must be imported as a constraint
file into ASICmaster and the following statement must be included in a
text file.

set_location (10,10) U1/mem_inst mem16x32;

Read this text file also into ASICmaster. Now ASICmaster treats the
memory as a macro and places memory in a rectangle with the bottom-left
corner on tile coordinate (10,10). Memory can be moved on the die by
changing this coordinate.

Note: Distributed memory contains very high fanout nets so if you do not
use the above placement constraints, memory timing will be sub-
optimal or the design may not route.
29

3
Timing for Distributed Memories

The following chapter decribes the timing parameters for the level
sensitive register file, and edge-triggered register file. Also it include is
information about Edge-triggered FIFOs

Level-sensitive Register File
The level-sensitive register file has three main timing parameters:

Tacc - time from stable read-address to output data valid

Tsetup_data - time from stable write-data to falling clock edge

Tsetup_addr - time from stable write-address to rising clock edge

Figure 3-1 shows these relationships:

Figure 3-1. Level-sensitive Mode Timing Diagram

rAddr

rData

wData

wAddr

WR

Tacc

Tsetup_data

Tsetup_addr
31

Chapter 3:
Failure to meet these timing values will have the following results:

Tacc - read data might be from previous address

Tsetup_data - data may not be written into the memory

Tsetup_addr - data may be written into some other address as well as the
intended address

Edge-triggered
Register File

The edge-triggered register file has three main timing parameters:

Tacc - time from stable read-address to output data valid

Tsetup_data - time from stable write-data to rising clock edge

Tsetup_addr - time from stable write-address to rising clock edge

Figure 3-2 shows the relationships of the signals:

Figure 3-2. Edge-triggered Mode Timing Diagram

rAddr

rData

Tacc

wData

wAddr

WR

Tsetup_data

Tsetup_addr
32

Level-sensitive Register File
Failure to meet these timing values will have the following results:

Tacc - read data might be from previous address

Tsetup_data - data may not be written into the memory

Tsetup_addr - data may be written into some other address

The main advantage of the edge-triggered memory is that the write timing
is sensitive only to the rising edge of the WR, not both the rising and
falling edges.

Edge-triggered
FIFO

The edge-triggered FIFO captures data on the rising edge of the WR
signal, and the read pointers advance on the rising edge of the RD signal.
Before using the FIFO, it must be initialized by pulsing the INIT signal
high. Immediately after initialization, the “empty” signal is true and the
“full” signal false. Data applied on the wDataX lines are captured when the
WR signal transitions from 0 to 1. Simultaneously, the “empty' signal will
become false to indicate that there is valid data on rDataX. Further
transitions from 0 to 1 on WR captures more data into the FIFO until
such time as “full” becomes true. At this point, the FIFO is full, and no
more data should be entered into it.

Afte the FIFO is initialized, the output data remains invalid until the first
read operation is performed. With every rising edge of the read pulse, the
FIFO generates the next word written into it on the output data bus until
all the words written into it are read out. At this point the empty signal
goes high. Further read operations produces no change to the data output
as it remains fixed at the last word written into the FIFO.

Figure 3-3 shows an example of an initialized FIFO, ten words are written,
and read.
33

Chapter 3:
Figure 3-3. Edge-triggered FIFO

Level Sensitive FIFO
The level sensitive FIFO has the same timing as the edge-triggered FIFO.
The only difference is that the data input is latched at the falling edge of
the write pulse.
34

4
Using Multiple Memories in a Design

This chapter describes how to use multiple memories in a design.
ProASIC devices contain dedicated memory blocks that can be configured
as RAM or FIFOs. Leaf memory block have certain control signals and
multiple memory blocks can be combined together to create deep and
wide memories. MEMORYmaster does this by combining multiple
memory blocks as required. MEMORYmaster generates a netlist and
placement constraints. Netlist instantiates memory leaf cells and the
placement constraints file contains placement information for each
memory leaf cell. During place and route, this information can be used to
place memory blocks automatically. These placement constraints can also
be used if the design is instantiating multiple memories. Consider the
following design shown in Figure 4-1.

Figure 4-1. Sample Design

In this design, there is a receive FIFO and transmit FIFO. Read and Write
ports are synchronous. Each FIFO is 32 words deep and 64 bits wide.
Also, both FIFOs are identical. Only one FIFO needs to be created with
MEMORYmaster, and it must be instantiated twice into the design.

Receive FIFO
32x64

Trans FIFO
32x64

Rec data
64

64

CLK

Rec data valid

Int data

64

Tran data valid

Transmit data

Tran FIFO emptyTran FIFO fullRec FIFO full Tran FIFO empty
35

Chapter 4: Using Multiple Memories in a Design
The MEMORYmaster window that illustrates how to create this FIFO is
shown in Figure 4-2.

Figure 4-2. MEMORYmaster Window Showing a Sample FIFO

Once the FIFO is generated with MEMORYmaster, it must be
instantiated into the design. The following is an example of the RTL after
instantiation:

module top(tran_data, rec_data, rec_data_valid,
tran_data_valid, clk,

reset, rec_fifo_full, rec_fifo_empty,tran_fifo_full,
tran_fifo_empty); // this is top level module
input rec_data_valid, clk, reset, tran_data_valid;
output[63:0] tran_data;
output rec_fifo_full, rec_fifo_empty,tran_fifo_full,
tran_fifo_empty;
input[63:0] rec_data;
wire[63:0] data_int;
/* Reciever FIFO instantiation */
sync_fifo rec_FI(.data_in(rec_data),.data_out(data_int),

.wr(rec_data_valid), .rd(1'b0),

.empty(rec_fifo_empty), .full(rec_fifo_full),
36

.reset(reset),.clk(clk));
/* transmit FIFO instantiation */
sync_fifo tran_F1(.data_in(data_int), .data_out
(tran_fifo_full)

.wr(1'b0),.rd(tran_data_valid),

.empty(tran_fifo_empty),.full(tran_fifo_full),

.reset(reset), .clk(clk));
/* other RTL of the design and other blocks */

endmodule

module sync_fifo (data_in, data_out, wr,
rd,empty,full,reset,clk);
input[63:0] data_in;
output[63:0] data_out;
input wr, rd,clk,reset;
output empty,full;
/* Instantiation of FIFO generated from MEMORYmaster */
fifo32x64 F1(.DO(data_out), .RCLOCK(clk), .WCLOCK(clk),

.DI(data_in), .WRB(wr), .RDB(rd), .RESET(reset),

.FULL(full), .EMPTY(empty), .EQTH(), .GEQTH());

endmodule

Simulate and
Synthesize

At this level, you can simulate and synthesize the design.The
following is and example of a verilog simulation command:

verilog test_sim.v top.v fifo32x64.v –v $AMHOME/etc/des-
kits/verilog/lib/A500K.v

The following is a typical synthesis script for Synopsys
Design Compiler:
read –format verilog fifo32x64.v
set_dont_touch find(design, “fifo32x64.v”) /* memories must
be dont_touch during synthesis */
read –format verilog top.v
create_clock –period 20 clk /* add timing constraints */
set_wire_load A500K
set_operating_conditions WORST
compile
set_port_is_pad “*” /* use set_pad_type to to use a particular
type of pad */
insert_pads
37

Chapter 4: Using Multiple Memories in a Design
write –format verilog –hierarchy –output top_str.v /* write
out netlist with hierarchy */
quit

The netlist top_str.v contains both FIFO instantiations and can be used
for simulation for post synthesis gate level simulation.

After synthesis, you can place and route the design. If there are multiple
instances of the same memory, ASICmaster automatically determines that
the same constraints file applies to all memories. So, place and route
should be run with top_str.v as a netlist and fifo32x64.gcf as a constraints
file. In this example, each FIFO uses 8 memory blocks. ASICmaster
attempts to place each FIFO in a line. The resulting placement on an
A500K130 device, which has 20 memory slots is shown in Figure 4-3.

Figure 4-3. Sample Memory Placement

M7
M4M6M7 M2

M5
M3

M3M1 M4M2M0
M1 M0M5

M6

8 blocks
of

8 blocks
of Rec_FI
38

Manual Placement of Multiple Memories
During placement ASICmaster attempts to keep one memory entity in
one group. In this example, it placed the Rec_FI/F1/M0 in the first
memory slot in the left side of the lower row, and rec_FI/F1/M1 in next
slot and so on. Only ten slots are available in one row, therefore, trans
FIFO placement started from the upper row. If each memory block had
used four blocks, both memory blocks would be placed one after another
in the lower row.

Manual Placement of Multiple Memories
A memory placement file must be created to manually place memories.
For example, to place the receive FIFO from the previous example on the
left side using both rows and the transmit FIFO on right side in both
rows, the following placement file would be used:

set_location (1,81) rec_FI/F1/M0;
set_location (1,89) rec_FI/F1/M1;
set_location (17,89) rec_FI/F1/M2;
set_location (17,81) rec_FI/F1/M3;
set_location (33,81) rec_FI/F1/M4;
set_location (33,89) rec_FI/F1/M5;
set_location (49,89) rec_FI/F1/M6;
set_location (49,81) rec_FI/F1/M7;

set_location (145,81) tran_FI/F1/M0;
set_location (145,89) tran_FI/F1/M1;
set_location (129,89) tran_FI/F1/M2;
set_location (129,81) tran_FI/F1/M3;
set_location (113,81) tran_FI/F1/M4;
set_location (113,89) tran_FI/F1/M5;
set_location (97,89) tran_FI/F1/M6;
set_location (97,81) tran_FI/F1/M7;

This constraints file should be read into ASICmaster and will result in the
placement as shown in Figure 4-4 on page 40.
39

Chapter 4: Using Multiple Memories in a Design
Figure 4-4. Sample FIFO Placement

Multiple Instances of Various Memories
MEMORYmaster will generate constraint files for each memory and all of
these files should be read into ASICmaster during place and route.
ASICmaster determines the placement for each memory and will keep
each memory entity together. For automatic placement of memories, it is
recommended that all constraint files from MEMORYmaster be read into
ASICmaster. To change default placement, you can discard constraints
from MEMORYmaster and create your own for memory placement.

If very deep or very wide memories are created, MEMORYmaster
combines together multiple blocks and uses glue logic to combine them.
Two lists quantifying glue logic are shown in Table 4-1 and Table 4-2 on
page 41 .

M1 M6M5M2 M1M2M5M6

M0 M7M4M3 M0M3M4M7

Tran FIFORec FIFO
40

Multiple Instances of Various Memories
These tables cover extreme cases of depth or width for RAM and FIFO for
the A500K130 device, which has 20 memory blocks and 12800 logic tiles.

For FIFOs, MEMORYmaster creates placement directives for glue logic.
If placement information from MEMORYmaster is used, glue logic
placement is more efficient.

Table 4-1. RAM

RAM Parity
Memory
Blocks
Used

Logic Tile
Used

Comment

Depth 5120
Width 8

Check Even 20 257
All 20
blocks used
in depth

Depth 256
Width 160

Check Even 20 2
All 20
blocks used
in width

Table 4-2. FIFO

FIFO Parity
Memory
Blocks
Used

Logic Tile
Used

Comment

Depth 5120
Width 8

Check Even 20 590
All 20
blocks used
in depth

Depth 256
Width 160

Check Even 20 60
All 20
blocks used
in width
41

Chapter 4: Using Multiple Memories in a Design
Programmable Flag in FIFOs
ProASIC devices provide a programmable flag for FIFOs. The threshold
for this flag can be set in MEMORYmaster in the main menu, shown in
Figure 1-7 on page 16. It is on the right bottom corner in the ‘FIFO
Trigger Level box. You can specify whether the flag is static or dynamic. If
it dynamic is selected, MEMORYmaster will create memory with a
LEVEL bus on the memory interface. Consequently, you can apply any
value to this bus to change its threshold dynamically. If the threshold is
not changing, you can select the static option and specify the threshold
value. In this case, Memorymaster will hardwire threshold to the specified
value. A detailed timing of these flags can be found in the A500k ProASIC
Datasheet.
42

A
Product Support

Actel backs its products with various support services including Customer
Service, a Customer Applications Center, a Web and FTP site, electronic
mail, and worldwide sales offices. This appendix contains information
about using these services and contacting Actel for service and support.

Actel U.S. Toll-Free Line
Use the Actel toll-free line to contact Actel for sales information, technical
support, requests for literature about Actel and Actel products, Customer
Service, investor information, and using the Action Facts service.

The Actel Toll-Free Line is (888) 99-ACTEL.

Customer Service
Contact Customer Service for non-technical product support, such as
product pricing, product upgrades, update information, order status, and
authorization.

From Northeast and North Central U.S.A., call (408) 522-4480.
From Southeast and Southwest U.S.A., call (408) 522-4480.
From South Central U.S.A., call (408) 522-4434.
From Northwest U.S.A., call (408) 522-4434.
From Canada, call (408) 522-4480.
From Europe, call (408) 522-4252 or +44 (0) 1256 305600.
From Japan, call (408) 522-4743.
From the rest of the world, call (408) 522-4743.
Fax, from anywhere in the world (408) 522-8044.
43

Appendix : Product Support
Customer Applications Center
The Customer Applications Center is staffed by applications engineers
who can answer your hardware, software, and design questions.

All calls are answered by our Technical Message Center. The center
retrieves information, such as your name, company name, phone number
and your question, and then issues a case number. The Center then
forwards the information to a queue where the first available application
engineer receives the data and returns your call. The phone hours are from
7:30 a.m. to 5 p.m., Pacific Standard Time, Monday through Friday.

The Customer Applications Center number is (800) 262-1060.

European customers can call +44 (0) 1256 305600.

Guru Automated Technical Support
Guru is a Web based automated technical support system accessible
through the Actel home page (http://www.actel.com/guru/). Guru
provides answers to technical questions about Actel products. Many
answers include diagrams, illustrations and links to other resources on the
Actel Web site. Guru is available 24 hours a day, seven days a week.

Web Site
Actel has a World Wide Web home page where you can browse a variety
of technical and non-technical information. Use a Net browser (Netscape
recommended) to access Actel’s home page.

The URL is http://www.actel.com. You are welcome to share the
resources we have provided on the net.

Be sure to visit the “Actel User Area” on our Web site, which contains
information regarding: products, technical services, current manuals, and
release notes.
44

FTP Site
FTP Site
Actel has an anonymous FTP site located at ftp://ftp.actel.com. You can
directly obtain library updates, software patches, design files, and data
sheets.

Electronic Mail
You can communicate your technical questions to our e-mail address and
receive answers back by e-mail, fax, or phone. Also, if you have design
problems, you can e-mail your design files to receive assistance. The e-mail
account is monitored several times per day.

The technical support e-mail address is tech@actel.com.
45

Appendix : Product Support
Worldwide Sales Offices

Headquarters
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
Toll Free: 888.99.ACTEL

Tel: 408.739.1010
Fax: 408.739.1540

US Sales
Offices

California

Bay Area
Tel: 408.328.2200
Fax: 408.328.2358

Irvine
Tel: 949.727.0470
Fax: 949.727.0476

San Diego
Tel: 619.938.9860
Fax: 619.938.9887

Thousand Oaks
Tel: 805.375.5769
Fax: 805.375.5749

Colorado

Tel: 303.420.4335
Fax: 303.420.4336

Florida

Tel: 407.677.6661
Fax: 407.677.1030

Georgia

Tel: 770.831.9090
Fax: 770.831.0055

Illinois

Tel: 847.259.1501
Fax: 847.259.1572

Maryland

Tel: 410.381.3289
Fax: 410.290.3291

Massachusetts

Tel: 978.244.3800
Fax: 978.244.3820

Minnesota

Tel: 612.854.8162
Fax: 612.854.8120

North Carolina

Tel: 919.376.5419
Fax: 919.376.5421

Pennsylvania

Tel: 215.830.1458
Fax: 215.706.0680

Texas

Tel: 972.235.8944
Fax: 972.235.965

International Sales
Offices

Canada
Suite 203
135 Michael Cowpland Dr,
Kanata, Ontario K2M 2E9

Tel: 613.591.2074
Fax: 613.591.0348

France
361 Avenue General de Gaulle
92147 Clamart Cedex

Tel: +33 (0)1.40.83.11.00
Fax: +33 (0)1.40.94.11.04

Germany
Bahnhofstrasse 15
85375 Neufahrn

Tel: +49 (0)8165.9584.0
Fax: +49 (0)8165.9584.1

Hong Kong
Suite 2206,
Parkside Pacific Place,
88 Queensway

Tel: +011.852.2877.6226
Fax: +011.852.2918.9693

Italy
Via Giovanni da Udine No. 34
20156 Milano

Tel: +39 (0)2.3809.3259
Fax: +39 (0)2.3809.3260

Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150

Tel: +81 (0)3.3445.7671
Fax: +81 (0)3.3445.7668

Korea
135-090, 18th Floor,
Kyoung Am Building
157-27 Samsung-dong
Kangnam-ku, Seoul

Tel: +82 (0)2.555.7425
Fax: +82 (0)2.555.5779

Taiwan
4F-3, No. 75, Sec. 1,
Hsin-Tai-Wu Road,
Hsi-chih, Taipei, 221

Tel: +886 (0)2.698.2525
Fax: +886 (0)2.698.2548

United Kingdom
Daneshill House,
Lutyens Close
Basingstoke,
Hampshire RG24 8AG

Tel: +44 (0)1256.305600
Fax: +44 (0)1256.355420
46

Index
A
Actel

FTP Site 45
publication set ii
Web Based Technical Support 44
Web Site 44

C
Configuration 5
Configurations 2
Contacting Actel

Customer Service 43
Electronic Mail 45
Technical Support 44
Toll-Free 43
Web Based Technical Support 44

Customer Service 43

D
Distributed 21
Distributed MEMORYmaster 21

E
Electronic Mail 45
Embedded Memory Configurations 2
Embedded MEMORYmaster 1

F
FIFO 22

I
Introduction i

M
Memory Architecture 21
Memory Placement 27

N
Naming Conventions 3

P
Product Support 43–46

Customer Applications Center 44
Customer Service 43
Electronic Mail 45
FTP Site 45
Technical Support 44
Toll-Free Line 43
Web Site 44

R
RAM 4
RAM Locations 13
Resource Usage 5

T
Technical Support 44
The Distributed FIFO 23
The Register File 21
Toll-Free Line 43

W
Web Based Technical Support 44
47

	Introduction
	Document Organization
	Document Assumptions
	ProASIC Series Manuals

	Embedded MEMORYmaster
	Embedded Memory
	Embedded Memory Configurations
	MEMORYmaster Main Window
	Generating Embedded Memories
	Integrating Memories into a Design
	Embedded Memory Examples
	Multiple Memory Generation and Integration

	Distributed MEMORYmaster
	Distributed Memory Architecture
	Determining Tile Usage
	Distributed Memory Generation and Instantiation
	Level-sensitive Register File
	Level Sensitive FIFO

	Using Multiple Memories in a Design
	Manual Placement of Multiple Memories
	Multiple Instances of Various Memories
	Programmable Flag in FIFOs

	Product Support
	Actel U.S. Toll-Free Line
	Customer Service
	Customer Applications Center
	Guru Automated Technical Support
	Web Site
	FTP Site
	Electronic Mail
	Worldwide Sales Offices

