
1

1
Digital Design
Copyright © 2006
Frank Vahid

Digital Design
Chapter 6:

Optimizations and Tradeoffs

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

2
Digital Design
Copyright © 2006
Frank Vahid

Introduction
• We now know how to build digital circuits

– How can we build better circuits?
• Let’s consider two important design criteria

– Delay – the time from inputs changing to new correct stable output
– Size – the number of transistors
– For quick estimation, assume

• Every gate has delay of “1 gate-delay”
• Every gate input requires 2 transistors
• Ignore inverters

6.1

16 transistors
2 gate-delays

F1

wxy

wxy

F1 = wxy + wxy’

(a)

4 transistors
1 gate-delay

F2

F2 = wx

(b)

w
x

si

= wx(y+y’) = wx

Transforming F1 to F2 represents
an optimization: Better in all

criteria of interest

z

e

(c)

20

15

10

5
(t

r

t

ors)

F1

F2

1 2 3 4
delay (gate-delays)

si
ze

(tr
an

si
st

or
s)

Note: Slides with animation are denoted with a small red "a" near the animated items

2

3
Digital Design
Copyright © 2006
Frank Vahid

Introduction
• Tradeoff

– Improves some, but worsens other, criteria of interest

z

e

Transforming G1 to G2
represents a tradeoff: Some
criteria better, others worse.

14 transistors
2 gate-delays

12 transistors
3 gate-delays

G1 G2

w w
x
y
z

x

w
y
z

G1 = wx + wy + z G2 = w(x+y) + z

20

15

10

5

G1
G2

1 2 3 4
delay (gate-delays)

si
ze

(tr
an

si
st

or
s)

4
Digital Design
Copyright © 2006
Frank Vahid

Introduction

• We obviously prefer optimizations, but often must accept
tradeoffs
– You can’t build a car that is the most comfortable, and has the best

fuel efficiency, and is the fastest – you have to give up something to
gain other things.

si

z

e

ansis

si

delay

z

e

si

delay

z

e

Optimizations
Tradeoffs

All criteria of interest
are improved (or at

least kept the same)

Some criteria of interest
are improved, while
others are worsenedsi

ze

si
ze

3

5
Digital Design
Copyright © 2006
Frank Vahid

Combinational Logic Optimization and Tradeoffs
• Two-level size optimization using

algebraic methods
– Goal: circuit with only two levels (ORed

AND gates), with minimum transistors
• Though transistors getting cheaper

(Moore’s Law), they still cost something

• Define problem algebraically
– Sum-of-products yields two levels

• F = abc + abc’ is sum-of-products; G =
w(xy + z) is not.

– Transform sum-of-products equation to
have fewest literals and terms

• Each literal and term translates to a
gate input, each of which translates to
about 2 transistors (see Ch. 2)

• Ignore inverters for simplicity

6.2

F = xyz + xyz’ + x’y’z’ + x’y’z

F = xy(z + z’) + x’y’(z + z’)

F = xy*1 + x’y’*1

F = xy + x’y’

0

1

x’ y’

n
y’

x’

0

1

m

m

n

n

F

0

1

y

m
y

x

x

F

x
y

x’
y’

m

n

4 literals + 2
terms = 6
gate inputs

6 gate inputs =
12 transistors

Note: Assuming 4-transistor 2-input AND/OR circuits;
in reality, only NAND/NOR are so efficient.

Example

6
Digital Design
Copyright © 2006
Frank Vahid

Algebraic Two-Level Size Minimization
• Previous example showed common

algebraic minimization method
– (Multiply out to sum-of-products, then)
– Apply following as much possible

• ab + ab’ = a(b + b’) = a*1 = a
• “Combining terms to eliminate a variable”

– (Formally called the “Uniting theorem”)

– Duplicating a term sometimes helps
• Note that doesn’t change function

– c + d = c + d + d = c + d + d + d + d ...

– Sometimes after combining terms, can
combine resulting terms

F = xyz + xyz’ + x’y’z’ + x’y’z
F = xy(z + z’) + x’y’(z + z’)
F = xy*1 + x’y’*1
F = xy + x’y’

F = x’y’z’ + x’y’z + x’yz
F = x’y’z’ + x’y’z + x’y’z + x’yz
F = x’y’(z+z’) + x’z(y’+y)
F = x’y’ + x’z

G = xy’z’ + xy’z + xyz + xyz’
G = xy’(z’+z) + xy(z+z’)
G = xy’ + xy (now do again)
G = x(y’+y)
G = x

a

a

a

4

7
Digital Design
Copyright © 2006
Frank Vahid

Karnaugh Maps for Two-Level Size Minimization
• Easy to miss “seeing” possible opportunities

to combine terms
• Karnaugh Maps (K-maps)

– Graphical method to help us find
opportunities to combine terms

– Minterms differing in one variable are adjacent
in the map

– Can clearly see opportunities to combine
terms – look for adjacent 1s

• For F, clearly two opportunities
• Top left circle is shorthand for x’y’z’+x’y’z =

x’y’(z’+z) = x’y’(1) = x’y’
• Draw circle, write term that has all the literals

except the one that changes in the circle
– Circle xy, x=1 & y=1 in both cells of the circle,

but z changes (z=1 in one cell, 0 in the other)
• Minimized function: OR the final terms

F = x’y’z + xyz + xyz’ + x’y’z’

0 0

0 0

00 01 11 10

0

1

F yz
x

1

x’y’

1 1 0 0

00 01 11 10

0 0

0

1 1 1

F yz

x

xy

x’y’z’

00 01 11 10

0

1

x’y’z x’yz x’yz’

xy’z’ xy’z xyz xyz’

F yz
x

1

Notice not in binary order

Treat left & right as adjacent too

1 1

F = x’y’ + xy

Easier than all that algebra:
F = xyz + xyz’ + x’y’z’ + x’y’z
F = xy(z + z’) + x’y’(z + z’)
F = xy*1 + x’y’*1
F = xy + x’y’

K-map

a

a

a

8
Digital Design
Copyright © 2006
Frank Vahid

K-maps
• Four adjacent 1s means

two variables can be
eliminated
– Makes intuitive sense – those

two variables appear in all
combinations, so one must be
true

– Draw one big circle –
shorthand for the algebraic
transformations above

G = xy’z’ + xy’z + xyz + xyz’
G = x(y’z’+ y’z + yz + yz’) (must be true)
G = x(y’(z’+z) + y(z+z’))
G = x(y’+y)
G = x

0 0 0 0

00 01 11 10

1 1

0

1 1 1

G yz
x

x

0 0 0 0

00 01 11 10

1 1

0

1 1 1

G yz
x

xyxy’

Draw the biggest
circle possible, or
you’ll have more terms
than really needed

5

9
Digital Design
Copyright © 2006
Frank Vahid

K-maps
• Four adjacent cells can be in

shape of a square
• OK to cover a 1 twice

– Just like duplicating a term
• Remember, c + d = c + d + d

• No need to cover 1s more than
once
– Yields extra terms – not minimized

0 1 1 0

00 01 11 10

0 1

0

1 1 0

H yz
x

z

H = x’y’z + x’yz + xy’z + xyz
(xy appears in all combinations)

0 1 0 0

00 01 11 10

1 1

0

1 1 1

I yz
x

x

y’z

The two circles are shorthand for:
I = x’y’z + xy’z’ + xy’z + xyz + xyz’
I = x’y’z + xy’z + xy’z’ + xy’z + xyz + xyz’
I = (x’y’z + xy’z) + (xy’z’ + xy’z + xyz + xyz’)
I = (y’z) + (x)

1 1 0 0

00 01 11 10

0 1

0

1 1 0

J yz
x

xz

y’zx’y’

a

a

a

10
Digital Design
Copyright © 2006
Frank Vahid

K-maps
• Circles can cross left/right sides

– Remember, edges are adjacent
• Minterms differ in one variable only

• Circles must have 1, 2, 4, or 8
cells – 3, 5, or 7 not allowed
– 3/5/7 doesn’t correspond to

algebraic transformations that
combine terms to eliminate a
variable

• Circling all the cells is OK
– Function just equals 1

0 1 0 0

00 01 11 10

1 0

0

1 0 1

K yz
x

xz’

x’y’z

0 0 0 0

00 01 11 10

1 1

0

1 1 0

L yz
x

1 1 1 1
1

00 01 11 10

1 1

0

1 1 1

E yz
x

6

11
Digital Design
Copyright © 2006
Frank Vahid

K-maps for Four Variables
• Four-variable K-map follows

same principle
– Adjacent cells differ in one

variable
– Left/right adjacent
– Top/bottom also adjacent

• 5 and 6 variable maps exist
– But hard to use

• Two-variable maps exist
– But not very useful – easy to do

algebraically by hand

0 0 1 0

00 01 11 10

1 1

00

01 1 0

0 0 1 0

0 0

11

10 1 0

F yz
wx

yz

w
’x

y’

0 1 1 0

00 01 11 10

0 1

00

01 1 0

0 1 1 0

0 1

11

10 1 0

G yz
wx

z

0 1

0

1

F z

y

G=z

F=w’xy’+yz

12
Digital Design
Copyright © 2006
Frank Vahid

Two-Level Size Minimization Using K-maps
General K-map method

1. Convert the function’s equation into
sum-of-products form

2. Place 1s in the appropriate K-map
cells for each term

3. Cover all 1s by drawing the fewest
largest circles, with every 1
included at least once; write the
corresponding term for each circle

4. OR all the resulting terms to create
the minimized function.

Example: Minimize:
G = a + a’b’c’ + b*(c’ + bc’)

1. Convert to sum-of-products
G = a + a’b’c’ + bc’ + bc’

2. Place 1s in appropriate cells

0 0

00 01 11 10

0

1

G bc
a

1

bc’

1a’b’c’
1 1 1 1

a

a

3. Cover 1s

1 0 0 1

00 01 11 10

1 1

0

1 1 1

G bc
a

a

c’

4. OR terms: G = a + c’

7

13
Digital Design
Copyright © 2006
Frank Vahid

• Minimize:
– H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’

+ a’bd + a’bcd’

1. Convert to sum-of-products:
– H = a’b’cd’ + a’b’c’d’ + ab’c’d’ +

ab’cd’ + a’bd + a’bcd’

2. Place 1s in K-map cells
3. Cover 1s
4. OR resulting terms

Two-Level Size Minimization Using K-maps
– Four Variable Example

1 1

00 01 11 10

00

01 1 1 1

1

11

10

0 0

0

0 0 0 0

0 0 1

H cd
ab

a

a’bd

a’bc

b’d’

Funny-looking circle, but
remember that left/right
adjacent, and top/bottom
adjacent

a’b’c’d’
ab’c’d’ a’bd

a’b’cd’

ab’cd’
a’bcd’

H = b’d’ + a’bc + a’bd

14
Digital Design
Copyright © 2006
Frank Vahid

Don’t Care Input Combinations
• What if particular input combinations

can never occur?
– e.g., Minimize F = xy’z’, given that

x’y’z’ (xyz=000) can never be true,
and that xy’z (xyz=101) can never be
true

– So it doesn’t matter what F outputs
when x’y’z’ or xy’z is true, because
those cases will never occur

– Thus, make F be 1 or 0 for those
cases in a way that best minimizes
the equation

• On K-map
– Draw Xs for don’t care combinations

• Include X in circle ONLY if minimizes
equation

• Don’t include other Xs

X 0 0 0

00 01 11 10

1 X

0

1 0 0

F yz y’z’
x

X 0 0 0

00 01 11 10

1 X

0

1 0 0

F yz y’z’ unneeded

xy’

x

Good use of don’t cares

Unnecessary use of don’t
cares; results in extra term

8

15
Digital Design
Copyright © 2006
Frank Vahid

Minimizization Example using Don’t Cares
• Minimize:

– F = a’bc’ + abc’ + a’b’c
– Given don’t cares: a’bc, abc

• Note: Use don’t cares with
caution
– Must be sure that we really don’t

care what the function outputs for
that input combination

– If we do care, even the slightest,
then it’s probably safer to set the
output to 0

00 01 11 10

0

0 0

0

1

F bc
a

’ca b

a

1 1

1

X

X

F = a’c + b

16
Digital Design
Copyright © 2006
Frank Vahid

Minimization with Don’t Cares Example:
Sliding Switch

• Switch with 5 positions
– 3-bit value gives position in

binary

• Want circuit that
– Outputs 1 when switch is in

position 2, 3, or 4
– Outputs 0 when switch is in

position 1 or 5
– Note that the 3-bit input can

never output binary 0, 6, or 7
• Treat as don’t care input

combinations

2,3,4,
detector

x

y

z

1 2 3 4 5

G

0 0 1 1

00 01 11 10

1 0

0

1 0 0

G yz
x x’y

xy’z’

Withou
t don’t
cares:
F = x’y
+ xy’z’

X 0 1 1

00 01 11 10

1 0

0

1 X X

G yz
x

y

z’

With don’t
cares:

F = y + z’

a

a

9

17
Digital Design
Copyright © 2006
Frank Vahid

Automating Two-Level Logic Size Minimization
• Minimizing by hand

– Is hard for functions with 5 or
more variables

– May not yield minimum cover
depending on order we choose

– Is error prone

• Minimization thus typically
done by automated tools
– Exact algorithm: finds optimal

solution
– Heuristic: finds good solution,

but not necessarily optimal

1 1 1 0

00 01 11 10

1 0

0

1 1 1

I yz
x

y’z’ x’y’ yz

(a)

(b)
1 1 1 0

00 01 11 10

1 0

0

1 1 1

I yz
x

y’z’ x’z

xy
4 terms

xy
Only 3 terms

a

a

18
Digital Design
Copyright © 2006
Frank Vahid

Basic Concepts Underlying Automated Two-Level
Logic Minimization

• Definitions
– On-set: All minterms that define

when F=1
– Off-set: All minterms that define

when F=0
– Implicant: Any product term

(minterm or other) that when 1
causes F=1

• On K-map, any legal (but not
necessarily largest) circle

• Cover: Implicant xy covers
minterms xyz and xyz’

– Expanding a term: removing a
variable (like larger K-map circle)

• xyz xy is an expansion of xyz

0 1 0 0

00 01 11 10

0 0

0

1 1 1

F yz
x

xy
xyz’
xyz

x’y’z

4 implicants of F
Note: We use K-maps here just for
intuitive illustration of concepts;
automated tools do not use K-maps.

• Prime implicant: Maximally
expanded implicant – any
expansion would cover 1s not in
on-set
• x’y’z, and xy, above
• But not xyz or xyz’ – they can

be expanded

10

19
Digital Design
Copyright © 2006
Frank Vahid

Basic Concepts Underlying Automated Two-Level
Logic Minimization

• Definitions (cont)
– Essential prime implicant: The

only prime implicant that covers a
particular minterm in a function’s
on-set

• Importance: We must include all
essential PIs in a function’s cover

• In contrast, some, but not all, non-
essential PIs will be included

1 1 0

0

0

00 01 11 10

1

0

1 1 1

G yz
x

not essential

not essential
y’z

x’y’
xz xyessential

1

essential

1

20
Digital Design
Copyright © 2006
Frank Vahid

Automated Two-Level Logic Minimization Method

• Steps 1 and 2 are exact
• Step 3: Hard. Checking all possibilities: exact, but computationally

expensive. Checking some but not all: heuristic.

11

21
Digital Design
Copyright © 2006
Frank Vahid

Example of Automated Two-Level Minimization
• 1. Determine all

prime implicants
• 2. Add essential PIs

to cover
– Italicized 1s are thus

already covered
– Only one uncovered

1 remains

• 3. Cover remaining
minterms with non-
essential PIs
– Pick among the two

possible PIs
1 1 1 0

00 01 11 10

1 0

0

1 0 1

I yz
x

y’z’

x’z

xz’

(c)

1 1 0

00 01 11 10

1 0

0

1 0 1

I yz
x

1 1 1 0

00 01 11 10

1 0

0

1 0 1

I yz
x

x’y’y’z’

x’z

xz’

(b)

x’y’y’z’

x’z

xz’

(a)
1

1

1

22
Digital Design
Copyright © 2006
Frank Vahid

Problem with Methods that Enumerate all Minterms or
Compute all Prime Implicants

• Too many minterms for functions with many variables
– Function with 32 variables:

• 232 = 4 billion possible minterms.
• Too much compute time/memory

• Too many computations to generate all prime implicants
– Comparing every minterm with every other minterm, for 32

variables, is (4 billion)2 = 1 quadrillion computations
– Functions with many variables could requires days, months, years,

or more of computation – unreasonable

12

23
Digital Design
Copyright © 2006
Frank Vahid

Solution to Computation Problem
• Solution

– Don’t generate all minterms or prime implicants
– Instead, just take input equation, and try to “iteratively” improve it
– Ex: F = abcdefgh + abcdefgh’+ jklmnop

• Note: 15 variables, may have thousands of minterms
• But can minimize just by combining first two terms:

– F = abcdefg(h+h’) + jklmnop = abcdefg + jklmnop

24
Digital Design
Copyright © 2006
Frank Vahid

Two-Level Minimization using Iterative Method
• Method: Randomly apply “expand”

operations, see if helps
– Expand: remove a variable from a

term
• Like expanding circle size on K-map

– e.g., Expanding x’z to z legal, but
expanding x’z to z’ not legal, in shown
function

– After expand, remove other terms
covered by newly expanded term

– Keep trying (iterate) until doesn’t help

Ex:
F = abcdefgh + abcdefgh’+ jklmnop
F = abcdefg + abcdefgh’ + jklmnop
F = abcdefg + jklmnop

0 1 1 0

00 01 11 10

0 1

0

1 1 0

I yz
x

0 1 1 0

00 01 11 10

0 1

0

1 1 0

I yz
x

xy’z

x’z

xyz

z(a)

(b)

xyzxy’z

x’z

x’

13

25
Digital Design
Copyright © 2006
Frank Vahid

Multi-Level Logic Optimization – Performance/Size
Tradeoffs

• We don’t always need the speed of two level logic
– Multiple levels may yield fewer gates
– Example

• F1 = ab + acd + ace F2 = ab + ac(d + e) = a(b + c(d + e))
• General technique: Factor out literals – xy + xz = x(y+z)

a
c
e

c
a

a
b

d

4
F1

F2

F1 = ab + acd + ace
(a)

F2 = a(b+c(d+e))
(b) (c)

22 transistors
2 gate delays

16 transistors
4 gate-delays

a

b

c

d
e

F1

F2
20

15

10

5

si

z

e

(t

r

ansis

t

ors

)

1 2 3 4
delay (gate-delays)

4

4

4

4

4

6

6

6

si
ze

(tr
an

si
st

or
s)

26
Digital Design
Copyright © 2006
Frank Vahid

Multi-Level Example
• Q: Use multiple levels to reduce number of transistors for

– F1 = abcd + abcef

a

• A: abcd + abcef = abc(d + ef)
• Has fewer gate inputs, thus fewer transistors

a
b
c
e
f

b
c

a

d
F1

F2

F1 = abcd + abcef F2 = abc(d + ef)
(a) (b) (c)

22 transistors
2 gate delays

18 transistors
3 gate delays

a
b
c

d

e

f

F1
F2

20

15

10

5

)

1 2 3 4
delay (gate-delays)

4
6

4

4

8

10

4

si
ze

(tr
an

si
st

or
s)

14

27
Digital Design
Copyright © 2006
Frank Vahid

Multi-Level Example: Non-Critical Path
• Critical path: longest delay path to output
• Optimization: reduce size of logic on non-critical paths by using multiple

levels

g
f

e
d

c

a
b

F1

F1 = (a+b)c + dfg + efg
(a) (c)

26 transistor s
3 gate-del ays

F1
F220

25

15

10
5

si
ze

(tr
an

sis
to

rs
)

1 2 3 4
delay (gate-del ays)

6

4

6

6

4

c

a
b

F2

F2 = (a+b)c + (d+e)fg
(b)

22 transistor s
3 gate-del ays

4

4

4

a
b
f
g

4

6

28
Digital Design
Copyright © 2006
Frank Vahid

Automated Multi-Level Methods
• Main techniques use heuristic iterative methods

– Define various operations
• “Factor out”: xy + xz = x(y+z)
• Expand, and others

– Randomly apply, see if improves
• May even accept changes that worsen, in hopes eventually leads to

even better equation
• Keep trying until can’t find further improvement

– Not guaranteed to find best circuit, but rather a good one

15

29
Digital Design
Copyright © 2006
Frank Vahid

State Reduction (State Minimization)
6.3

x y

if x = 1,1,0,0
then y = 0,1,1,0,0

• Goal: Reduce number of states in FSM without changing
behavior
– Fewer states potentially reduces size of state register

• Consider the two FSMs below with x=1, then 1, then 0, 0

x
state

y
x

state

y

S0 S0S1 S1S1 S1S2 S0S2 S0

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1

y=0 y=1

x’ x

x

x’

For the same sequence of inputs,
the output of the two FSMs is the same

a

30
Digital Design
Copyright © 2006
Frank Vahid

State Reduction: Equivalent States
Two states are equivalent if:
1. They assign the same values to

outputs
– e.g. S0 and S2 both assign y to 0,
– S1 and S3 both assign y to 1

2. AND, for all possible sequences of
inputs, the FSM outputs will be the
same starting from either state
– e.g. say x=1,1,0,0,…

• starting from S1, y=1,1,0,0,…
• starting from S3, y=1,1,0,0,…

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

States S0 and S2 equivalent
States S1 and S3 equivalent

S0,
S2

S1,
S3

y=0 y=1

x’ x

x

x’

a

16

31
Digital Design
Copyright © 2006
Frank Vahid

State Reduction: Example with no Equivalencies
• Another example…
• State S0 is not equivalent with any

other state since its output (y=0)
differs from other states’ output S1

y=0 y=1

S2

y=1

S3

y=1

x x

x x

x’

x’

x’

x’

Inputs: x; Outputs: y

S0

• Consider state S1 and S3

S1

y=0 y=1

S2

y=1

S3

y=1

x x

x x

x’

x’

x’

x’

S0

Start from S1, x=0

S1

y=0 y=1

S2

y=1

S3

y=1

x x

x x

x’

x’

x’

x’

S0

Start from S3, x=0

– Outputs are initially the same (y=1)
– From S1, when x=0, go to S2 where y=1
– From S3, when x=0, go to S0 where y=0
– Outputs differ, so S1 and S3 are not

equivalent.

a

32
Digital Design
Copyright © 2006
Frank Vahid

• State reduction through visual inspection (what we did in
the last few slides) isn’t reliable and cannot be automated –
a more methodical approach is needed: implication tables

• Example:

State Reduction with Implication Tables

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y
Redundant

Diagonal

S0

S0 S1 S2 S3

S1

S2

S3

– To compare every pair of states, construct a
table of state pairs (above right)

– Remove redundant state pairs, and state pairs
along the diagonal since a state is equivalent
to itself (right)

S0

S0 S1 S2 S3

S1

S2

S3

S0 S1 S2

S1

S2

S3

17

33
Digital Design
Copyright © 2006
Frank Vahid

• Mark (with an X) state pairs with different
outputs as non-equivalent:

State Reduction with Implication Tables

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S1,S0): At S1, y=1 and at S0, y=0. So S1
and S0 are non-equivalent.

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S2, S0): At S2, y=0 and at S0, y=0. So we
don’t mark S2 and S0 now.

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S2, S1): Non-equivalent

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S3, S0): Non-equivalent

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S3, S1): Don’t mark

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S3, S2): Non-equivalent

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

• We can see that S2 & S0 might be
equivalent and S3 & S1 might be
equivalent, but only if their next states are
equivalent (remember the example from
two slides ago)

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

a

34
Digital Design
Copyright © 2006
Frank Vahid

State Reduction with Implication Tables
• We need to check each unmarked state

pair’s next states
• We can start by listing what each

unmarked state pair’s next states are for
every combination of inputs

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

– (S2, S0)
• From S2, when x=1 go to S3

From S0, when x=1 go to S1 (S3, S1)

So we add (S3, S1) as a next state pair
• From S2, when x=0 go to S2

From S0, when x=0 go to S0

(S2, S0)

So we add (S2, S0) as a next state pair
– (S3, S1)

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

• By a similar process, we add the next state
pairs (S3, S1) and (S0, S2)

(S3, S1)
(S0, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

a

18

35
Digital Design
Copyright © 2006
Frank Vahid

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

State Reduction with Implication Tables
• Next we check every unmarked

state pair’s next state pairs
• We mark the state pair if one of its

next state pairs is marked
S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

– (S2, S0)

• So we do nothing and move on

• Next state pair (S3, S1) is not marked

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

• Next state pair (S2, S0) is not marked

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)– (S3, S1)

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

• Next state pair (S3, S1) is not marked
S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

• Next state pair (S0, S2) is not marked S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

• So we do nothing and move on
S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

36
Digital Design
Copyright © 2006
Frank Vahid

State Reduction with Implication Tables
• We just made a pass through the

implication table
– Make additional passes until no

change occurs

• Then merge the unmarked state
pairs – they are equivalent

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

S0,S2 S1,S3

y=0 y=1

x’ x

x

x’

19

37
Digital Design
Copyright © 2006
Frank Vahid

State Reduction with Implication Tables

38
Digital Design
Copyright © 2006
Frank Vahid

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

State Reduction Example
• Given FSM on the right

– Step 1: Mark state pairs having
different outputs as nonequivalent

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

a

20

39
Digital Design
Copyright © 2006
Frank Vahid

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

State Reduction Example
• Given FSM on the right

– Step 1: Mark state pairs having
different outputs as nonequivalent

– Step 2: For each unmarked state
pair, write the next state pairs for the
same input values

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

x=0
(S2, S2)

x’

x’

x=1(S2, S2)

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

x

x

(S3, S1)

x=0
(S2, S2)

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S3, S1)

x’

x’

(S0, S2)

x=1

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S0, S2)

x x

(S3, S1)

x=0

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S2, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)

(S0, S2)
(S3, S1)

x’ x’

(S0, S2)

x=1

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S2, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)

(S0, S2)
(S3, S1)

(S0, S2)

x

x

(S3, S3)

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S2, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)

(S0, S2)
(S3, S1)

(S0, S2)
(S3, S3)

a

40
Digital Design
Copyright © 2006
Frank Vahid

21

41
Digital Design
Copyright © 2006
Frank Vahid

State Reduction Example
• Given FSM on the right

– Step 1: Mark state pairs having
different outputs as nonequivalent

– Step 2: For each unmarked state
pair, write the next state pairs for the
same input values

– Step 3: For each unmarked state
pair, mark state pairs having
nonequivalent next state pairs as
nonequivalent.

• Repeat this step until no change
occurs, or until all states are marked.

– Step 4: Merge remaining state pairs
All state pairs are marked –

there are no equivalent
state pairs to merge

(S2, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)

(S0, S2)
(S3, S1)

(S0, S2)
(S3, S3)

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

a

42
Digital Design
Copyright © 2006
Frank Vahid

A Larger State Reduction Example

– Step 1: Mark state pairs having different outputs as
nonequivalent

– Step 2: For each unmarked state pair, write the next state
pairs for the same input values

– Step 3: For each unmarked state pair, mark state pairs
having nonequivalent next state pairs as nonequivalent.

• Repeat this step until no change occurs, or until all states
are marked.

– Step 4: Merge remaining state pairs

S3 S0

y=0y=0

y=1 y=1

S1S2

S4x

x’ x’

x’x’ x’ x

x x

Inputs: x; Outputs: y

S2

S1

S3

S4

S0 S1 S2 S3

(S4,S2)
(S0,S1)

(S3,S2)
(S0,S1)

(S3,S4)
(S2,S1)

(S4,S3)
(S0,S0)

y=0

a

22

43
Digital Design
Copyright © 2006
Frank Vahid

S2

S1

S3

S4

S0 S1 S2 S3

(S4,S2)
(S0,S1)

(S3,S2)
(S0,S1)

(S3,S4)
(S2,S1)

(S4,S3)
(S0,S0)

A Larger State Reduction Example

– Step 1: Mark state pairs having different outputs as
nonequivalent

– Step 2: For each unmarked state pair, write the next state
pairs for the same input values

– Step 3: For each unmarked state pair, mark state pairs
having nonequivalent next state pairs as nonequivalent.

• Repeat this step until no change occurs, or until all states
are marked.

– Step 4: Merge remaining state pairs

S3 S0

y=0y=0

y=1 y=1

S1S2

S4x

x’ x’

x’x’ x’ x

x x

Inputs: x; Outputs: y

y=0

y=0

y=0

y=1

S0 S1,S2

S3,S4

x

x

xx’

x’

x’

Inputs: x; Outputs: y a

44
Digital Design
Copyright © 2006
Frank Vahid

Need for Automation

x’
x’

x’

x’
x’

x’

x’

x'x’
x’

x’

x’

x’

x’

x’

x

x
x

x x

x

x
x

x

x
x

x

x
x

x
SO

SM

SI

SNSL

SJ

SK

SG

SH
SB

z=0

z=0

z=0

z=1

z=1

z=1

z=1

z=1

z=0

z=0

z=0z=0
z=1

z=0

z=1

SA

SDSC

SE

SF

Inputs: x; Outputs: z• Automation needed
– Table for large FSM too big for

humans to work with
• n inputs: each state pair can have 2n

next state pairs.
• 4 inputs 24=16 next state pairs

– 100 states would have table with 100*100=100,000 state pairs cells
– State reduction typically automated

• Often using heuristics to reduce compute time

23

45
Digital Design
Copyright © 2006
Frank Vahid

State Encoding
• Encoding: Assigning a unique

bit representation to each state
• Different encodings may

optimize size, or tradeoff size
and performance

• Consider 3-Cycle Laser Timer…
– Example 3.7’s encoding: 15

gate inputs
– Try alternative encoding

• x = s1 + s0
• n1 = s0
• n0 = s1’b + s1’s0
• Only 8 gate inputs

11 10

00

01 10 11

b’

b

x=0

x=1 x=1 x=1

Inputs: b; Outputs: x

On1 On2 On3

Off

1
1
0
0

1
1

0
0

a

46
Digital Design
Copyright © 2006
Frank Vahid

State Encoding: One-Hot Encoding
• One-hot encoding

– One bit per state – a bit being ‘1’
corresponds to a particular state

– Alternative to minimum bit-width
encoding in previous example

– For A, B, C, D: A: 0001, B: 0010, C:
0100, D: 1000

• Example: FSM that outputs 0, 1, 1, 1
– Equations if one-hot encoding:

• n3 = s2; n2 = s1; n1 = s0; x = s3 +
s2 + s1

– Fewer gates and only one level of
logic – less delay than two levels, so
faster clock frequency

00

01

Inputs: none; Outputs: x
x=0

x=1

A

B

11

10

D

C

x=1

x=1

1000

0100

0001

0010

clk

s1

n1

x

s0
n0

State register
clk

n0

s3 s2 s1 s0

n1
n2

n3

State register

x

8
6
4
2

2 3 41
delay (gate-delays)

one-hot

binary

a

24

47
Digital Design
Copyright © 2006
Frank Vahid

One-Hot Encoding Example:
Three-Cycles-High Laser Timer

• Four states – Use four-bit one-hot
encoding
– State table leads to equations:

• x = s3 + s2 + s1
• n3 = s2
• n2 = s1
• n1 = s0*b
• n0 = s0*b’ + s3

– Smaller
• 3+0+0+2+(2+2) = 9 gate inputs
• Earlier binary encoding (Ch 3):

15 gate inputs
– Faster

• Critical path: n0 = s0*b’ + s3
• Previously: n0 = s1’s0’b + s1s0’
• 2-input AND slightly faster than

3-input AND

0001

0010 0100 1000

b’

b

x=0

x=1 x=1 x=1

Inputs: b; Outputs: x

On1 On2 On3

Off

a

48
Digital Design
Copyright © 2006
Frank Vahid

Output Encoding
• Output encoding: Encoding

method where the state
encoding is same as the
output values
– Possible if enough outputs, all

states with unique output values

00

01

Inputs: none; Outputs: x,y
xy=00

xy=11

A

B

11

10

D

C

xy=01

xy=10

Use the output values
as the state encoding

a

25

49
Digital Design
Copyright © 2006
Frank Vahid

Output Encoding Example: Sequence Generator

• Generate sequence 0001, 0011, 1110,
1000, repeat
– FSM shown

• Use output values as state encoding
• Create state table
• Derive equations for next state

– n3 = s1 + s2; n2 = s1; n1 = s1’s0; n0 = s1’s0
+ s3s2’

Inputs: none; Outputs: w, x, y, z
wxyz=0001

wxyz=0011

A

B

D

C

wxyz=1000

wxyz=1100

clk

n0

s3 s2 s1 s0

n1n2n3

State register

w
x
y
z

50
Digital Design
Copyright © 2006
Frank Vahid

Moore vs. Mealy FSMs

• FSM implementation architecture
– State register and logic
– More detailed view

• Next state logic – function of present state and FSM
inputs

• Output logic
– If function of present state only – Moore FSM
– If function of present state and FSM inputs – Mealy FSM

clk

I O

State register

Combinational
logic

S

N clk

I

O

State register

Next-state
logic

Output
logic

FSM
outputs

FS
M

in
pu

ts

N

S

(a)

clk

I

O

State register

Next-state
logic

Output
logic

FSM
outputs

FS
M

in
pu

ts

N

S

(b)

Mealy FSM a dds thi s

Moore Mealy

/x=0

b/x=1
b’/x=0

Inputs: b; Outputs: x

S1S0

Graphically: show outputs with
arcs, not with states

a

26

51
Digital Design
Copyright © 2006
Frank Vahid

Mealy FSMs May Have Fewer States

• Soda dispenser example: Initialize, wait until enough, dispense
– Moore: 3 states; Mealy: 2 states

Moore Mealy

Inputs: enough (bit)
Outputs: d, clear (bit)

Wait

Disp

Init
enough’

enoughd=0
clear=1

d=1

Inputs: enough (bit)
Outputs: d, clear (bit)

WaitInit

enough’

enough/d=1

clk

Inputs: enough
State:

Outputs: clear
d

I IW W D

(a)

clk

Inputs: enough
State:

Outputs: clear
d

I IW W

(b)

/d=0, clear=1

52
Digital Design
Copyright © 2006
Frank Vahid

Mealy vs. Moore
• Q: Which is Moore,

and which is Mealy?

Inputs: b; Outputs: s1, s0, p

Time

Alarm

Date

Stpwch

b’/s1s0=00, p=0

b/s1s0=00, p=1

b/s1s0=01, p=1

b/s1s0=10, p=1

b/s1s0=11, p=1

b’/s1s0=01, p=0

b’/s1s0=10, p=0

b’/s1s0=11, p=0

Inputs: b; Outputs: s1, s0, p

Time

S2

Alarm

b

b

b

b

b

b

b

s1s0=00, p=0

s1s0=00, p=1

s1s0=01, p=0

s1s0=01, p=1

s1s0=10, p=0

s1s0=10, p=1

s1s0=11, p=0

s1s0=11, p=1

S4

Date

S6

Stpwch

S8

b’

b’

b’

b’

Mealy

Moore

• A: Mealy on left,
Moore on right
– Mealy outputs on

arcs, meaning
outputs are function
of state AND
INPUTS

– Moore outputs in
states, meaning
outputs are function
of state only

27

53
Digital Design
Copyright © 2006
Frank Vahid

Mealy vs. Moore Example: Beeping Wristwatch
• Button b

– Sequences mux select lines
s1s0 through 00, 01, 10, and
11

• Each value displays different
internal register

– Each unique button press
should cause 1-cycle beep,
with p=1 being beep

• Must wait for button to be
released (b’) and pushed
again (b) before sequencing

• Note that Moore requires
unique state to pulse p, while
Mealy pulses p on arc

• Tradeoff: Mealy’s pulse on p
may not last one full cycle

Mealy

Moore

Inputs: b; Outputs: s1, s0, p

Time

Alarm

Date

Stpwch

b’/s1s0=00, p=0

b/s1s0=00, p=1

b/s1s0=01, p=1

b/s1s0=10, p=1

b/s1s0=11, p=1

b’/s1s0=01, p=0

b’/s1s0=10, p=0

b’/s1s0=11, p=0

Inputs: b; Outputs: s1, s0, p

Time

S2

Alarm

b

b

b

b

b

b

b

s1s0=00, p=0

s1s0=00, p=1

s1s0=01, p=0

s1s0=01, p=1

s1s0=10, p=0

s1s0=10, p=1

s1s0=11, p=0

s1s0=11, p=1

S4

Date

S6

Stpwch

S8

b’

b’

b’

b’

54
Digital Design
Copyright © 2006
Frank Vahid

Mealy vs. Moore Tradeoff
• Mealy outputs change mid-cycle if input changes

– Note earlier soda dispenser example
• Mealy had fewer states, but output d not 1 for full cycle

– Represents a type of tradeoff

Moore Mealy

Inputs: enough (bit)
Outputs: d, clear (bit)

Wait

Disp

Init
enough’

enoughd=0
clear=1

d=1

Inputs: enough (bit)
Outputs: d, clear (bit)

WaitInit

enough’

enough/d=1

clk

Inputs: enough
State:

Outputs: clear
d

I IW W D

(a)

clk

Inputs: enough
State:

Outputs: clear
d

I IW W

(b)

/d=0, clear=1

28

55
Digital Design
Copyright © 2006
Frank Vahid

Implementing a Mealy FSM
• Straightforward

– Convert to state table
– Derive equations for each

output
– Key difference from

Moore: External outputs
(d, clear) may have
different value in same
state, depending on input
values

Inputs: enough (bit)
Outputs: d, clear (bit)

WaitInit

enough’/d=0

enough/d=1

/ d=0, clear=1

56
Digital Design
Copyright © 2006
Frank Vahid

Mealy and Moore can be Combined
• Final note on Mealy/Moore

– May be combined in same FSM

Inputs: b; Outputs: s1, s0, p

Time

Alarm

Date

Stpwch

b’/p=0

b/p=1
s1s0=00

s1s0=01
b/p=1

b/p=1
s1s0=10

b/p=1
s1s0=11

b’/p=0

b’/p=0

b’/p=0

Combined
Moore/Mealy

FSM for beeping
wristwatch
example

29

57
Digital Design
Copyright © 2006
Frank Vahid

Datapath Component Tradeoffs
• Can make some components faster (but bigger), or smaller (but

slower), than the straightforward components we built in Ch 4
• We’ll build

– A faster (but bigger) adder than the carry-ripple adder
– A smaller (but slower) multiplier than the array-based multiplier

• Could also do for the other Ch 4 components

6.4

58
Digital Design
Copyright © 2006
Frank Vahid

Faster Adder
• Built carry-ripple adder in Ch 4

– Similar to adding by hand, column by column
– Con: Slow

• Output is not correct until the carries have
rippled to the left

• 4-bit carry-ripple adder has 4*2 = 8 gate delays
– Pro: Small

• 4-bit carry-ripple adder has just 4*5 = 20 gates

FA

a3

co s3

b3

FA

a0 b0 ci

FA

a2

s2 s1 s0

b2

FA

a1b1

c3carries:

b3

a3

s3

c2

b2

a2

s2

c1

b1

a1

s1

cin

b0

a0

s0

+

cout

A:

B:

a3 b3 a2 b2 a1 b1 a0 b0 cin

s3 s2 s1 s0cout
4-bit adder

a

a

30

59
Digital Design
Copyright © 2006
Frank Vahid

Faster Adder
• Faster adder – Use two-level

combinational logic design process
– Recall that 4-bit two-level adder was big
– Pro: Fast

• 2 gate delays
– Con: Large

• Truth table would have 2(4+4) =256 rows
• Plot shows 4-bit adder would use about

500 gates

• Is there a compromise design?
– Between 2 and 8 gate delays
– Between 20 and 500 gates

10000
8000
6000
4000

2000
0 1 2 3 4 5

N
6 7 8

T

r

ansis

t

ors

a3

co s3

b3 a0 b0 cia2

s2 s1 s0

b2 a1b1

Two-level: AND level
followed by ORs

60
Digital Design
Copyright © 2006
Frank Vahid

FA

a3

co s3

b3

FA

a0 b0 ci

FA

a2

s2 s1 s0

b2

FA

a1b1

a

Faster Adder – (Bad) Attempt at “Lookahead”
• Idea

– Modify carry-ripple adder – For a stage’s carry-in, don’t wait for carry
to ripple, but rather directly compute from inputs of earlier stages

• Called “lookahead” because current stage “looks ahead” at previous
stages rather than waiting for carry to ripple to current stage

FA

c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0b0b1b2b3 a0a1a2a3

stage 0
cout

look
ahead

look
ahead

look
ahead

Notice – no rippling of carry

31

61
Digital Design
Copyright © 2006
Frank Vahid

FA

a3

co s3

b3

FA

a0b0 c0

FA

a2

s2 s1 s0

b2

FA

a1b1

a

Faster Adder – (Bad) Attempt at “Lookahead”

Stage 0: Carry-in is already an
external input: c0

co0

c1

Stage 1: c1=co0
co0= b0c0 + a0c0 + a0b0

c1 = b0c0 + a0c0 + a0b0

co1

c2

Stage 2: c2=co1
co1 = b1c1 + a1c1 + a1b1

c2 = b1c1 + a1c1 + a1b1

• Recall full-adder equations:
– s = a xor b
– c = bc + ac + ab

• Want each stage’s carry-in bit to be function of external inputs only (a’s, b’s, or c0)

c2 = b1(b0c0 + a0c0 + a0b0) + a1(b0c0 + a0c0 + a0b0) +a1b1
c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1

FA

c4

c3 c2

s3 s2

stage 3 stage 2

c1

s1

stage 1

c0

s0

c0b0b1b2b3 a0a1a2a3

stage 0

look
ahead

look
ahead

look
ahead

cout

Continue for c3

c3

co2

62
Digital Design
Copyright © 2006
Frank Vahid

Faster Adder – (Bad) Attempt at “Lookahead”

c1 = b0c0 + a0c0 + a0b0

• Carry lookahead logic
function of external inputs
– No waiting for ripple

• Problem
– Equations get too big
– Not efficient
– Need a better form of

lookahead

c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1

FA
c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0b0b1b2b3 a0a1a2a3

stage 0

look
ahead

look
ahead

look
ahead

cout

c3 = b2b1b0c0 + b2b1a0c0 + b2b1a0b0 + b2a1b0c0 + b2a1a0c0 + b2a1a0b0 + b2a1b1 +
a2b1b0c0 + a2b1a0c0 + a2b1a0b0 + a2a1b0c0 + a2a1a0c0 + a2a1a0b0 + a2a1b1 + a2b2

32

63
Digital Design
Copyright © 2006
Frank Vahid

Better Form of Lookahead
• Have each stage compute two terms

– Propagate: P = a xor b
– Generate: G = ab

• Compute lookahead from P and G terms, not from external inputs
– Why P & G? Because the logic comes out much simpler

• Very clever finding; not particularly obvious though
• Why those names?

– G: If a and b are 1, carry-out will be 1 – “generate” a carry-out of 1 in this case
– P: If only one of a or b is 1, then carry-out will equal the carry-in – propagate the

carry-in to the carry-out in this case

(a)

b3
a3
s3

b2
a2
s2

b1
a1
s1

b0
a0
s0

1
1
0

01carries: c4 c3 c2 c1 c0
B:
A: + +
cout

cin

1
1
1

11

+
0
1
0

11

+
1
0
0

11

+

c1
c0
b0
a0

if a0xor b0 = 1
then c1 = 1 if c0 = 1

(call this P: Propagate)

if a0b0 = 1
then c1 = 1

(call this G:Generate)

64
Digital Design
Copyright © 2006
Frank Vahid

“Bad” lookahead

FA
c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0b0b1b2b3 a0a1a2a3

stage 0

look
ahead

look
ahead

look
ahead

cout

Better Form of Lookahead

• With P & G, the carry lookahead
equations are much simpler
– Equations before plugging in

• c1 = G0 + P0c0
• c2 = G1 + P1c1
• c3 = G2 + P2c2
• cout = G3 + P3c3

After plugging in:

c1 = G0 + P0c0

c2 = G1 + P1c1 = G1 + P1(G0 + P0c0)
c2 = G1 + P1G0 + P1P0c0

c3 = G2 + P2c2 = G2 + P2(G1 + P1G0 + P1P0c0)
c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0

cout = G3 + P3G2 + P3P2G1 + P3P2P1G0 +
P3P2P1P0c0

Much simpler than the “bad” lookahead

a

a

Carry-lookahead logic
G3

a3 b3

P3 c3

cout s3

G2

a2 b2

P2 c2

s2

G1

a1 b1

P1 c1

s1

G0

a0 b0 cin

P0 c0

s0(b)

Half-adder Half-adder Half-adder Half-adder

33

65
Digital Design
Copyright © 2006
Frank Vahid

Better Form of Lookahead

Carry-lookahead logicG3

a3 b3

P3 c3

cout s3

G2

a2 b2

P2 c2

s2

G1

a1 b1

P1 c1

s1

G0

a0 b0 cin

P0 c0

s0(b)

Half-adder Half-adder Half-adder Half-adder

c1 = G0 + P0c0
c2 = G1 + P1G0 + P1P0c0

c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0
cout = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0

(c)

SPG
block

C
al

l t
hi

s
su

m
/p

ro
pa

ga
te

/g
en

er
at

e
(S

P
G

) b
lo

ck

G3P3 G2P2 G1 G0 c0P1 P0
Carry-loo kahead logic

Stage 4 Stage 3 Stage 2 Stage 1

a

a

66
Digital Design
Copyright © 2006
Frank Vahid

Carry-Lookahead Adder -- High-Level View

• Fast -- only 4 gate delays
– Each stage has SPG block with 2 gate levels
– Carry-lookahead logic quickly computes the

carry from the propagate and generate bits
using 2 gate levels inside

• Reasonable number of gates -- 4-bit adder
has only 26 gates

a3 b3

a b

P G

cout

cout

G3P3

cin

a2 b2

a b

P G

G2P2c3

cin
SPG block SPG block

a1 b1

a b

P G

G1P1c2 c1

cin
SPG block

a0 b0 c0

a b

P G

G0P0

cin
SPG block

4-bit carry-lookahead logic

s3 s2 s1 s0

• 4-bit adder comparison
(gate delays, gates)
– Carry-ripple: (8, 20)
– Two-level: (2, 500)
– CLA: (4, 26)

o Nice compromise

34

67
Digital Design
Copyright © 2006
Frank Vahid

Carry-Lookahead Adder – 32-bit?
• Problem: Gates get bigger in each stage

– 4th stage has 5-input gates
– 32nd stage would have 33-input gates

• Too many inputs for one gate
• Would require building from smaller gates,

meaning more levels (slower), more gates
(bigger)

• One solution: Connect 4-bit CLA adders in
ripple manner
– But slow (4 + 4 + 4 + 4 gate delays)

Stage 4

Gates get bigger
in each stage

a3a2a1a0 b3

s3s2s1s0cout

cout

cin
b2b1b0

4-bit adder
a3a2a1a0 b3

s3s2s1s0

s11-s8s15-s12

a15-a12 b15-b12 a11-a8 b11-b8

cout
cin

b2b1b0
4-bit adder

a3a2a1a0 b3

s3s2s1s0cout

s7s6s5s4

cin
b2b1b0

a7a6a5a4 b7b6b5b4

4-bit adder
a3a2a1a0 b3

s3s2s1s0

s3s2s1s0

cout
cin

b2b1b0

a3a2a1a0 b3b2b1b0

4-bit adder

68
Digital Design
Copyright © 2006
Frank Vahid

Hierarchical Carry-Lookahead Adders
• Better solution -- Rather than rippling the carries, just repeat the carry-

lookahead concept
– Requires minor modification of 4-bit CLA adder to output P and G

a3a2a1a0 b3

s3s2s1s0

cout

cout
cin

b2b1b0
4-bit adder

a3a2a1a0 b3

a15-a12 b15-b12 a11-a8 b11-b8

cin
b2b1b0

4-bit adder

4-bit carry-lookahead logic

a3a2a1a0 b3

s3s2s1s0
cin

b2b1b0

a7a6a5a4 b7b6b5b4

4-bit adder
a3a2a1a0 b3

s3s2s1s0
cin

b2b1b0

a3a2a1a0 b3b2b1b0

4-bit adder
s3s2s1s0P G

P G

P3G3

coutP G

P2c3 G2

coutP G

P1c2 G1

coutP G

P0c1 G0

s15-s12 s11-s18 s7-s4 s3-s0

These use carry-lookahead internally

Second level of carry-lookahead

a

G3P3 G2P2 G1 G0 c0P1 P0
Carry lookahead logic

Stage 4 Stage 3 Stage 2 Stage 1

Same lookahead logic as
inside the 4-bit adders

cout c3 c2 c1

35

69
Digital Design
Copyright © 2006
Frank Vahid

Hierarchial Carry-Lookahead Adders
• Hierarchical CLA concept can be applied for larger adders
• 32-bit hierarchical CLA

– Only about 8 gate delays (2 for SPG block, then 2 per CLA level)
– Only about 14 gates in each 4-bit CLA logic block

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

2-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

P G c
SPG block

P

P P

P P P P P P P
G

G G

G G G G G G G
c

c c

c c c c c c c

Q: How many gate
delays for 64-bit
hierarchical CLA,
using 4-bit CLA logic?

A: 16 CLA-logic blocks
in 1st level, 4 in 2nd, 1
in 3rd -- so still just 8
gate delays (2 for
SPG, and 2+2+2 for
CLA logic). CLA is a
very efficient method.

a

70
Digital Design
Copyright © 2006
Frank Vahid

Carry Select Adder
• Another way to compose adders

– High-order stage -- Compute result for carry in of 1 and of 0
• Select based on carry-out of low-order stage
• Faster than pure rippling

a3 a2 a1 a0

a7 a6 a5a4 b7b6b5b4

b3

s3 s2 s1 s0co
ciHI4_1 HI4_0

b2b1b0
4-bit adder

a3 a2 a1 a0 b3

s3 s2 s1 s0co

co s7 s6

Q

s5 s4

cin LO4
b2b1b0

4-bit adder
a3 a2 a1 a0 b3

s3 s2 s1 s0co

s3 s2 s1 s0

ci
b2b1b0

a3 a2 a1 a0 b3b2b1b0

4-bit adder1 0 ci

I1 I0
5-bit wide 2⋅ 1 mux S

Operate in parallel

suppose =1

36

71
Digital Design
Copyright © 2006
Frank Vahid

Adder Tradeoffs

• Designer picks the adder that satisfies particular delay and
size requirements
– May use different adder types in different parts of same design

• Faster adders on critical path, smaller adders on non-critical path

delay

carry-select
carry-
ripple

carry-lookahead

multilevel
carry-lookahead

si
ze

72
Digital Design
Copyright © 2006
Frank Vahid

Smaller Multiplier

+ (5-bit)

+ (6-bit)

+ (7-bit)

0 0

0 00

0

a0a1a2a3

b0

b1

b2

b3

0

p7..p0

pp
1

pp
2

pp
3

pp
4

32-bit adder would have 1024 gates here ...

... and 31 adders
here (big ones, too)

• Multiplier in Ch 4 was array style
– Fast, reasonable size for 4-bit: 4*4 = 16 partial product AND terms, 3 adders
– Rather big for 32-bit: 32*32 = 1024 AND terms, and 31 adders

a

a

37

73
Digital Design
Copyright © 2006
Frank Vahid

Smaller Multiplier -- Sequential (Add-and-Shift) Style

• Smaller multiplier: Basic idea
– Don’t compute all partial products simultaneously
– Rather, compute one at a time (similar to by hand), maintain

running sum

0 1 1 0
0 0 11

0 0 0 0

+

Step 1

0 1 1 0
0 1 0 0 1 0
+

0 1 1 0
0 01 1

0 0 1 1 0

+

Step 2

0 0 0 0
0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 1 0 0 1 0

+

Step 3

0 0 0 0
0 0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 0 1 0 0 1 0

+

Step 4

0 1 1 0+(partial product)
0 0 1 1 0(new running sum)

(running sum)

a

74
Digital Design
Copyright © 2006
Frank Vahid

Smaller Multiplier -- Sequential (Add-and-Shift) Style

• Design circuit that
computes one partial
product at a time, adds to
running sum
– Note that shifting

running sum right
(relative to partial
product) after each step
ensures partial product
added to correct running
sum bits

0 1 1 0
0 0 1 1
0 0 0 0

+

Step 1

0 1 1 0
0 1 0 0 1 0
+

0 1 1 0
0 01 1

0 0 1 1 0
+

Step 2

0 0 0 0
0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 1 0 0 1 0
+

Step 3

0 0 0 0
0 0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 0 1 0 0 1 0
+

Step 4

0 1 1 0+ (partial product)
0 0 1 1 0 (new running sum)

(running sum)

mr3

mrld

mdld

mr2
mr1
mr0
rsload
rsclear
rsshr

start

load

load
clear
shr

product

running sum
register (8)

multiplier
register (4)

multiplier

multiplicand
register (4)

multiplicand

load

c

o

n

t

r

oller

4-bit adder

a

38

75
Digital Design
Copyright © 2006
Frank Vahid

Smaller Multiplier -- Sequential Style: Controller

• Wait for start=1
• Looks at multiplier one bit at a

time
– Adds partial product

(multiplicand) to running sum if
present multiplier bit is 1

– Then shifts running sum right
one position

mr3

mrld

mdld

mr2
mr1
mr0
rsload
rsclear
rsshr

start

load

load
clear
shr

product

running sum
register (8)

multiplier
register (4)

multiplier

multiplicand
register (4)

multiplicand

load

co
ntr

oll
er 4-bit adder

start’

mr0’

mr0 mr1 mr2 mr3

mr1’ mr2’ mr3’

start

start

mdld = 1
mrld = 1
rsclear = 1

rsshr=1 rsshr=1 rsshr=1 rsshr=1

rsload=1 rsload=1rsload=1rsload=1

controller

mr3

mrld
mdld

mr2
mr1
mr0
rsload
rsclear
rsshr

Vs. array-style:
Pro: small

• Just three registers,
adder, and controller

Con: slow
• 2 cycles per multiplier
bit
• 32-bit: 32*2=64 cycles
(plus 1 for init.)

a

0110

0011

00000000

a

011000000011000010010000010010000010010000010010

Correct product

a

76
Digital Design
Copyright © 2006
Frank Vahid

RTL Design Optimizations and Tradeoffs
• While creating datapath during RTL design, there are

several optimizations and tradeoffs, involving
– Pipelining
– Concurrency
– Component allocation
– Operator binding
– Operator scheduling
– Moore vs. Mealy high-level state machines

6.5

39

77
Digital Design
Copyright © 2006
Frank Vahid

Pipelining
• Intuitive example: Washing dishes

with a friend, you wash, friend dries
– You wash plate 1
– Then friend dries plate 1, while you wash

plate 2
– Then friend dries plate 2, while you wash

plate 3; and so on
– You don’t sit and watch friend dry; you

start on the next plate

• Pipelining: Break task into stages,
each stage outputs data for next
stage, all stages operate concurrently
(if they have data)

W1 W2 W3D1 D2 D3

Without pipelining:

With pipelining:

“Stage 1”

“Stage 2”

Time

W1

D1

W2

D2

W3

D3

a

78
Digital Design
Copyright © 2006
Frank Vahid

Pipelining Example

• S = W+X+Y+Z
• Datapath on left has critical path of 4 ns, so fastest clock period is 4 ns

– Can read new data, add, and write result to S, every 4 ns
• Datapath on right has critical path of only 2 ns

– So can read new data every 2 ns – doubled performance (sort of...)

W X Y Z

2ns 2ns

2ns

+ +

+

S

clk

2ns 2ns

2ns

Longest path
is only 2 ns

stage 2

stage 1

clk

S S(0)

So minimum clock
period is 2ns

S(1)

clk

S S(0)

So minimum clock
period is 4ns

S(1)

Longest path
is 2+2 = 4 ns

W X Y Z

+ +

+

S

clk

2ns

pipeline
registers

S
ta

ge
 1

S
ta

ge
 2

a

40

79
Digital Design
Copyright © 2006
Frank Vahid

Pipelining Example

• Pipelining requires refined definition of performance
– Latency: Time for new data to result in new output data (seconds)
– Throughput: Rate at which new data can be input (items / second)
– So pipelining above system

• Doubled the throughput, from 1 item / 4 ns, to 1 item / 2 ns
• Latency stayed the same: 4 ns

W X Y Z

2n
s

2n
s

2n
s

+ +

+

S

clk

clk

S S(0)

So mininum clock
period is4 ns

S(1)

Longest path
is 2+2 = 4 ns

W X Y Z

2n
s

2n
s

2n
s

+ +

+

S

clk

clk

S S(0)

So mininum clock
period is2 ns

S(1)

Longest path
is only 2 ns
pipeline
registers

st
ag

e
2

st
ag

e
1

(a) (b)

80
Digital Design
Copyright © 2006
Frank Vahid

Pipeline Example: FIR Datapath
• 100-tap FIR filter: Row of

100 concurrent multipliers,
followed by tree of adders
– Assume 20 ns per multiplier
– 14 ns for entire adder tree
– Critical path of 20+14 = 34 ns

• Add pipeline registers
– Longest path now only 20 ns
– Clock frequency can be nearly

doubled
• Great speedup with minimal

extra hardware

⋅ ⋅

+ +

+

multipliers

adder tree

xt registers

X

yreg

Y

14
 n

s
20

 n
s

st
ag

e
2

st
ag

e
1

pipeline
registers

41

81
Digital Design
Copyright © 2006
Frank Vahid

Concurrency
• Concurrency: Divide task into

subparts, execute subparts
simultaneously
– Dishwashing example: Divide stack

into 3 substacks, give substacks to
3 neighbors, who work
simultaneously -- 3 times speedup
(ignoring time to move dishes to
neighbors' homes)

– Concurrency does things side-by-
side; pipelining instead uses stages
(like a factory line)

– Already used concurrency in FIR
filter -- concurrent multiplications

* * *

Task

Pipelining

Concurrencya

Can do both, too

82
Digital Design
Copyright © 2006
Frank Vahid

Concurrency Example: SAD Design Revisited
• Sum-of-absolute differences video compression example (Ch 5)

– Compute sum of absolute differences (SAD) of 256 pairs of pixels
– Original : Main loop did 1 sum per iteration, 256 iterations, 2 cycles per iter.

i_lt_256

i_inc

i_clr

sum_ld

sum_clr

sad_reg_ld

Datapath

sum

sad_reg

sad

AB_addr A_data B_data

<256
9

32

8

8

8 8

3232

32

i –

+

abs

!goS0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_reg=sum

S2

i<256

(i<256)’

-/abs/+ done in 1 cycle,
but done 256 times

256 iters.*2 cycles/iter. = 512 cycles

42

83
Digital Design
Copyright © 2006
Frank Vahid

Concurrency Example: SAD Design Revisited
• More concurrent design

– Compute SAD for 16 pairs concurrently, do 16 times to compute all
16*16=256 SADs.

– Main loop does 16 sums per iteration, only 16 iters., still 2 cycles per iter.
go AB_rd AB_addr

AB_rd=1

S0

S1

S2

S4

!(i_lt_16)

go
!go

sum_clr=1
i_clr=1

sum_ld=1

sad_reg_ld=1

i_inc=1

i_lt_16

Controller Datapath

sad

sad_reg

sum

i

<16
i_lt_16

i_clr

sum_ld

sum_clr

sad_reg_ld

i_inc

A0 B0 A1 A14 A15B1 B14 B15

– – – –
16 subtractors

abs abs abs abs
16 absolute

values

+ +

+ +

Adder tree to
sum 16 values

i_
lt_

16
’

a

All -/abs/+’s shown done in 1
cycle, but done only 16 times

O
rig

: 2
56

*2
 =

 5
12

 c
yc

le
s

N
ew

: 1
6*

2
=

32
 c

yc
le

s

a

84
Digital Design
Copyright © 2006
Frank Vahid

Concurrency Example: SAD Design Revisited
• Comparing the two designs

– Original: 256 iterations * 2 cycles/iter = 512 cycles
– More concurrent: 16 iterations * 2 cycles/iter = 32 cycles
– Speedup: 512/32 = 16x speedup

• Versus software
– Recall: Estimated about 6 microprocessor cycles per iteration

• 256 iterations * 6 cycles per iteration = 1536 cycles
• Original design speedup vs. software: 1536 / 512 = 3x

– (assuming cycle lengths are equal)
• Concurrent design’s speedup vs. software: 1536 / 32 = 48x

– 48x is very significant – quality of video may be much better

!(i_lt_16)

43

85
Digital Design
Copyright © 2006
Frank Vahid

Component Allocation
• Another RTL tradeoff: Component allocation – Choosing a particular

set of functional units to implement a set of operations
– e.g., given two states, each with multiplication

• Can use 2 multipliers (*)
• OR, can instead use 1 multiplier, and 2 muxes
• Smaller size, but slightly longer delay due to the mux delay

A B

t1 = t2*t3 t4 = t5*t6

∗

t2

t1

t3

∗

t5

t4

t6

(a)

FSM-A: (t1ld=1) B: (t4ld=1)

∗

2×1

t4t1
(b)

2×1sl

t2 t5 t3 t6

sr

A: (sl=0; sr=0; t1ld=1)
B: (sl=1; sr=1; t4ld=1)

(c)

2 mul

1 mul

delay

a

86
Digital Design
Copyright © 2006
Frank Vahid

Operator Binding
• Another RTL tradeoff: Operator binding – Mapping a set of operations

to a particular component allocation
– Note: operator/operation mean behavior (multiplication, addition), while

component (aka functional unit) means hardware (multiplier, adder)
– Different bindings may yield different size or delay

Binding 2si

z

e

A B

t1 = t2* t3 t4 = t5* t6 t7 = t8* t3

C A B

t1 = t2* t3 t4 = t5* t6 t7 = t8* t3

C

MULA MULB

2x1

t7t4

2x1

t5t3t2 t8 t6 t3

sr

t1

sl 2x1

t2 t8 t3

sl

t6t5

t7t1 t4

MULBMULA
2 multipliers
allocated

Binding 1 Binding 2

Binding 1

delay

si
ze2 muxes

vs.
1 mux

a

44

87
Digital Design
Copyright © 2006
Frank Vahid

Operator Scheduling
• Yet another RTL tradeoff: Operator scheduling –

Introducing or merging states, and assigning operations to
those states.

si

z

e

*

t3t2

*

t1

t6t5

*

t4

B2

(some
operations)

(some
operations)

t1 = t2* t3
t4 = t5* t6

A B C

*t4 = t5 t6

3-state schedule

delay

si
ze

2x1

t4t1

2x1

t2 t5 t3 t6

srsl

4-state schedule

smaller
(only 1 *)

but more
delay due to

muxes

a

A B

(some
operations)

(some
operations)

t1 = t2*t3
t4 = t5*t6

C

88
Digital Design
Copyright © 2006
Frank Vahid

Operator Scheduling Example: Smaller FIR Filter
• 3-tap FIR filter design in Ch 5: Only one state – datapath computes new

Y every cycle
– Used 3 multipliers and 2 adders; can we reduce the design’s size?

xt0 xt1 xt2

x(t-2)x(t-1)x(t)

3-tap FIR filter

X

Y

clk

c0 c1 c2

* *

+

*

+

3
2
1
0

2x4

yreg

e
Ca1

CL

C

Ca0

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

Inputs: X (N bits)
Outputs: Y (N bits)
Local registers:

xt0, xt1, xt2 (N bits)

S1
xt0 = X
xt1 = xt0
xt2 = xt1
Y = xt0*c0

+ xt1*c1
+ xt2*c2

45

89
Digital Design
Copyright © 2006
Frank Vahid

Operator Scheduling Example: Smaller FIR Filter
• Reduce the design’s size by re-scheduling the operations

– Do only one multiplication operation per state

a

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

Inputs: X (N bits)
Outputs: Y (N bits)
Local registers:

xt0, xt1, xt2 (N bits)

S1

(a)

xt0 = X
xt1 = xt0
xt2 = xt1
Y = xt0*c0

+ xt1*c1
+ xt2*c2

Inputs: X (N bits)
Outputs: Y (N bits)
Local registers:

xt0, xt1, xt2, sum (N bits)

S1

S2

S3

S4

S5

sum = sum + xt0 * c0

sum = 0
xt0 = N
xt1 = xt0
xt2 = xt1

sum = sum +xt1 * c1

sum = sum + xt2 * c2

Y = sum

(b)

90
Digital Design
Copyright © 2006
Frank Vahid

Operator Scheduling Example: Smaller FIR Filter
• Reduce the design’s size by re-scheduling the operations

– Do only one multiplication (*) operation per state, along with sum (+)

a

Inputs: X (N bits)
Outputs: Y (N bits)
Local registers:

xt0, xt1, xt2, sum (N bits)

S1

S2

S3

S4

S5

sum = sum + xt0 * c0

sum = 0
xt0 = X
xt1 = xt0
xt2 = xt1

sum = sum + xt1 * c1

sum = sum + xt2 * c2

Y = sum sum

*

+

yreg

c2c1c0xt0 xt1 xt2X
clk

x_ld

y_ld

Y

mul_s0
3x1 3x1

mul_s1

MAC
Multiply-
accumulate: a
common datapath
component

46

91
Digital Design
Copyright © 2006
Frank Vahid

Operator Scheduling Example: Smaller FIR Filter
• Many other options exist

between fully-concurrent and
fully-serialized
– e.g., for 3-tap FIR, can use 1, 2,

or 3 multipliers
– Can also choose fast array-style

multipliers (which are concurrent
internally) or slower shift-and-
add multipliers (which are
serialized internally)

– Each options represents
compromises

concurrent FIR

compromises

serial
FIR

delay

si
ze

92
Digital Design
Copyright © 2006
Frank Vahid

More on Optimizations and Tradeoffs
• Serial vs. concurrent computation has been a common tradeoff

theme at all levels of design
– Serial: Perform tasks one at a time
– Concurrent: Perform multiple tasks simultaneously

• Combinational logic tradeoffs
– Concurrent: Two-level logic (fast but big)
– Serial: Multi-level logic (smaller but slower)

• abc + abd + ef (ab)(c+d) + ef – essentially computes ab first (serialized)
• Datapath component tradeoffs

– Serial: Carry-ripple adder (small but slow)
– Concurrent: Carry-lookahead adder (faster but bigger)

• Computes the carry-in bits concurrently
– Also multiplier: concurrent (array-style) vs. serial (shift-and-add)

• RTL design tradeoffs
– Concurrent: Schedule multiple operations in one state
– Serial: Schedule one operation per state

6.6

47

93
Digital Design
Copyright © 2006
Frank Vahid

Higher vs. Lower Levels of Design
• Optimizations and tradeoffs at higher levels typically have

greater impact than those at lower levels
– RTL decisions impact size/delay more than gate-level decisions

delay

siz
e

(a) (b)

high-level changes

land

Spotlight analogy: The lower you
are, the less solution landscape is
illuminated (meaning possible)

94
Digital Design
Copyright © 2006
Frank Vahid

Algorithm Selection
• Chosen algorithm can have big impact

– e.g., which filtering algorithm?
• FIR is one type, but others require less computation at

expense of lower-quality filtering
• Example: Quickly find item’s address in 256-word

memory
– One use: data compression. Many others.
– Algorithm 1: “Linear search”

• Compare item with M[0], then M[1], M[2], ...
• 256 comparisons worst case

– Algorithm 2: “Binary search” (sort memory first)
• Start considering entire memory range

– If M[mid]>item, consider lower half of M
– If M[mid]<item, consider upper half of M
– Repeat on new smaller range
– Dividing range by 2 each step; at most 8 such divisions

• Only 8 comparisons in worst case
• Choice of algorithm has tremendous impact

– Far more impact than say choice of comparator type

0x00000000
0x00000001
0x0000000F2:

96:
128:

255:

3:

1:
0:

0x000000FF

0x00000F0A
0x0000FFAA

0xFFFF0000

256x32 memory

128

96

64

Linear
search

Binary
search

a

48

95
Digital Design
Copyright © 2006
Frank Vahid

Power Optimization
• Until now, we’ve focused on size and delay
• Power is another important design criteria

– Measured in Watts (energy/second)
• Rate at which energy is consumed

• Increasingly important as more transistors fit on a
chip

– Power not scaling down at same rate as size
• Means more heat per unit area – cooling is difficult
• Coupled with battery’s not improving at same rate

– Means battery can’t supply chip’s power for as long

– CMOS technology: Switching a wire from 0 to 1
consumes power (known as dynamic power)

• P = k * CV2f
– k: constant; C: capacitance of wires; V: voltage; f: switching

frequency
• Power reduction methods

– Reduce voltage: But slower, and there’s a limit
– What else?

en
er

gy
 (1

=v
al

ue
 in

 2
00

1)

8

4

2

1

battery energy
density

energy
demand

2001 03 05 07 09

96
Digital Design
Copyright © 2006
Frank Vahid

Power Optimization using Clock Gating
• P = k * CV2f
• Much of a chip’s switching f (>30%)

due to clock signals
– After all, clock goes to every register
– Portion of FIR filter shown on right

• Notice clock signals n1, n2, n3, n4

• Solution: Disable clock switching to
registers unused in a particular state

– Achieve using AND gates
– FSM only sets 2nd input to AND gate to

1 in those states during which register
gets loaded

• Note: Advanced method, usually done
by tools, not designers

– Putting gates on clock wires creates
variations in clock signal (clock skew);
must be done with great care

yreg

c2c1c0xt0 xt1 xt2X

x_ld

y_ld

clk n2 n3 n4n1

yreg

c2c1c0xt0 xt1 xt2X

x_ld

y_ld

n2 n3 n4
n1

clk

clk

n1, n2, n3

n4

Much
switching
on clock
wires

clk
n1, n2, n3

n4

Greatly reduced
switching – less power

s1

s5

a

49

97
Digital Design
Copyright © 2006
Frank Vahid

Power Optimization using Low-Power Gates on
Non-Critical Paths

• Another method: Use low-power gates
– Multiple versions of gates may exist

• Fast/high-power, and slow/low-power, versions
– Use slow/low-power gates on non-critical paths

• Reduces power, without increasing delay

g
f

e
d

c

a
b

F1

26 transistors
3 ns delay
5 nanowatts power

1/1

1/1

1/1

1/1

1/1

nanowatts
nanoseconds g

f

e
d

c

a
b

F1

26 transistors
3 ns delay
4 nanowatts power

2/0.5

1/1

2/0.5

1/1

1/1

high-power gates

low-power gates
on noncritical path

low-power
gates

delay

p

o

w

er

si
ze

