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Introduction
• We now know how to build digital circuits

– How can we build better circuits?
• Let’s consider two important design criteria

– Delay – the time from inputs changing to new correct stable output
– Size – the number of transistors
– For quick estimation, assume 

• Every gate has delay of “1 gate-delay”
• Every gate input requires 2 transistors
• Ignore inverters

6.1
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Note: Slides with animation are denoted with a small red "a" near the animated items
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Introduction
• Tradeoff

– Improves some, but worsens other, criteria of interest
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Transforming G1 to G2 
represents a tradeoff: Some 
criteria better, others worse.

14 transistors
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Introduction

• We obviously prefer optimizations, but often must accept 
tradeoffs
– You can’t build a car that is the most comfortable, and has the best 

fuel efficiency, and is the fastest – you have to give up something to 
gain other things. 
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Optimizations
Tradeoffs

All criteria of interest
are improved (or at 

least kept the same)

Some criteria of interest 
are improved, while 
others are worsenedsi
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Combinational Logic Optimization and Tradeoffs
• Two-level size optimization using 

algebraic methods
– Goal: circuit with only two levels (ORed

AND gates), with minimum transistors
• Though transistors getting cheaper 

(Moore’s Law), they still cost something

• Define problem algebraically
– Sum-of-products yields two levels

• F = abc + abc’ is sum-of-products; G = 
w(xy + z) is not. 

– Transform sum-of-products equation to 
have fewest literals and terms

• Each literal and term translates to a 
gate input, each of which translates to 
about 2 transistors (see Ch. 2)

• Ignore inverters for simplicity

6.2

F = xyz + xyz’ + x’y’z’ + x’y’z

F = xy(z + z’) + x’y’(z + z’)

F = xy*1 + x’y’*1

F = xy + x’y’
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4 literals + 2 
terms = 6 
gate inputs

6 gate inputs = 
12 transistors

Note: Assuming 4-transistor 2-input AND/OR circuits;
in reality, only NAND/NOR are so efficient.

Example
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Algebraic Two-Level Size Minimization
• Previous example showed common 

algebraic minimization method
– (Multiply out to sum-of-products, then)
– Apply following as much possible

• ab + ab’ = a(b + b’) = a*1 = a
• “Combining terms to eliminate a variable”

– (Formally called the “Uniting theorem”)

– Duplicating a term sometimes helps
• Note that doesn’t change function

– c + d = c + d + d = c + d + d + d + d ...

– Sometimes after combining terms, can 
combine resulting terms

F = xyz + xyz’ + x’y’z’ + x’y’z
F = xy(z + z’) + x’y’(z + z’)
F = xy*1 + x’y’*1
F = xy + x’y’

F = x’y’z’ + x’y’z + x’yz
F = x’y’z’ + x’y’z + x’y’z + x’yz
F = x’y’(z+z’) + x’z(y’+y)
F = x’y’ + x’z

G = xy’z’ + xy’z + xyz + xyz’
G = xy’(z’+z) + xy(z+z’)
G = xy’ + xy (now do again)
G = x(y’+y)
G = x

a

a

a
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Karnaugh Maps for Two-Level Size Minimization
• Easy to miss “seeing” possible opportunities 

to combine terms
• Karnaugh Maps (K-maps)

– Graphical method to help us find 
opportunities to combine terms

– Minterms differing in one variable are adjacent
in the map

– Can clearly see opportunities to combine 
terms – look for adjacent 1s

• For F, clearly two opportunities
• Top left circle is shorthand for x’y’z’+x’y’z = 

x’y’(z’+z) = x’y’(1) = x’y’
• Draw circle, write term that has all the literals 

except the one that changes in the circle
– Circle xy, x=1 & y=1 in both cells of the circle, 

but z changes (z=1 in one cell, 0 in the other)
• Minimized function: OR the final terms

F = x’y’z + xyz + xyz’ + x’y’z’

0 0

0 0

00 01 11 10

0

1

F yz
x

1

x’y’

1 1 0 0

00 01 11 10

0 0

0

1 1 1

F yz

x

xy

x’y’z’

00 01 11 10

0

1

x’y’z x’yz x’yz’

xy’z’ xy’z xyz xyz’

F yz
x

1

Notice not in binary order

Treat left & right as adjacent too

1 1

F = x’y’ + xy

Easier than all that algebra:
F = xyz + xyz’ + x’y’z’ + x’y’z
F = xy(z + z’) + x’y’(z + z’)
F = xy*1 + x’y’*1
F = xy + x’y’

K-map

a

a

a
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K-maps
• Four adjacent 1s means 

two variables can be 
eliminated
– Makes intuitive sense – those 

two variables appear in all 
combinations, so one must be 
true 

– Draw one big circle –
shorthand for the algebraic 
transformations above

G = xy’z’ + xy’z + xyz + xyz’
G = x(y’z’+ y’z + yz + yz’) (must be true)
G = x(y’(z’+z) + y(z+z’))
G = x(y’+y)
G = x

0 0 0 0

00 01 11 10

1 1

0

1 1 1

G yz
x

x

0 0 0 0

00 01 11 10

1 1

0

1 1 1

G yz
x

xyxy’

Draw the biggest
circle possible, or
you’ll have more terms
than really needed
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K-maps
• Four adjacent cells can be in 

shape of a square
• OK to cover a 1 twice

– Just like duplicating a term
• Remember, c + d = c + d + d

• No need to cover 1s more than 
once
– Yields extra terms – not minimized

0 1 1 0

00 01 11 10

0 1

0

1 1 0

H yz
x

z

H = x’y’z + x’yz + xy’z + xyz
(xy appears in all combinations)

0 1 0 0

00 01 11 10

1 1

0

1 1 1

I yz
x

x

y’z

The two circles are shorthand for:
I = x’y’z + xy’z’ + xy’z + xyz + xyz’
I = x’y’z + xy’z + xy’z’ + xy’z + xyz + xyz’
I = (x’y’z + xy’z) + (xy’z’ + xy’z + xyz + xyz’)
I = (y’z) + (x)

1 1 0 0

00 01 11 10

0 1

0

1 1 0

J yz
x

xz

y’zx’y’

a

a

a
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K-maps
• Circles can cross left/right sides

– Remember, edges are adjacent
• Minterms differ in one variable only

• Circles must have 1, 2, 4, or 8 
cells – 3, 5, or 7 not allowed
– 3/5/7 doesn’t correspond to 

algebraic transformations that 
combine terms to eliminate a 
variable

• Circling all the cells is OK
– Function just equals 1 

0 1 0 0

00 01 11 10

1 0

0

1 0 1

K yz
x

xz’

x’y’z

0 0 0 0

00 01 11 10

1 1

0

1 1 0

L yz
x

1 1 1 1
1

00 01 11 10

1 1

0

1 1 1

E yz
x
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K-maps for Four Variables
• Four-variable K-map follows 

same principle
– Adjacent cells differ in one 

variable
– Left/right adjacent
– Top/bottom also adjacent

• 5 and 6 variable maps exist
– But hard to use 

• Two-variable maps exist
– But not very useful – easy to do 

algebraically by hand

0 0 1 0

00 01 11 10

1 1

00

01 1 0

0 0 1 0

0 0

11

10 1 0

F yz
wx

yz

w
’x

y’

0 1 1 0

00 01 11 10

0 1

00

01 1 0

0 1 1 0

0 1

11

10 1 0

G yz
wx

z

0 1

0

1

F z

y

G=z

F=w’xy’+yz
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Two-Level Size Minimization Using K-maps
General K-map method

1. Convert the function’s equation into 
sum-of-products form

2. Place 1s in the appropriate K-map 
cells for each term

3. Cover all 1s by drawing the fewest 
largest circles, with every 1 
included at least once; write the 
corresponding term for each circle

4. OR all the resulting terms to create 
the minimized function.

Example: Minimize:
G = a + a’b’c’ + b*(c’ + bc’)

1. Convert to sum-of-products
G = a + a’b’c’ + bc’ + bc’

2. Place 1s in appropriate cells

0 0

00 01 11 10

0

1

G bc
a

1

bc’

1a’b’c’
1 1 1 1

a

a

3. Cover 1s

1 0 0 1

00 01 11 10

1 1

0

1 1 1

G bc
a

a

c’

4. OR terms: G = a + c’
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• Minimize:
– H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’

+ a’bd + a’bcd’

1. Convert to sum-of-products:
– H = a’b’cd’ + a’b’c’d’ + ab’c’d’ + 

ab’cd’ + a’bd + a’bcd’

2. Place 1s in K-map cells
3. Cover 1s
4. OR resulting terms

Two-Level Size Minimization Using K-maps 
– Four Variable Example

1 1

00 01 11 10

00

01 1 1 1

1

11

10

0 0

0

0 0 0 0

0 0 1

H cd
ab

a

a’bd

a’bc

b’d’

Funny-looking circle, but 
remember that left/right
adjacent, and top/bottom 
adjacent

a’b’c’d’
ab’c’d’ a’bd

a’b’cd’

ab’cd’
a’bcd’

H = b’d’ + a’bc + a’bd
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Don’t Care Input Combinations
• What if particular input combinations 

can never occur?
– e.g., Minimize F = xy’z’, given that 

x’y’z’ (xyz=000) can never be true, 
and that xy’z (xyz=101) can never be 
true

– So it doesn’t matter what F outputs 
when x’y’z’ or xy’z is true, because 
those cases will never occur

– Thus, make F be 1 or 0 for those 
cases in a way that best minimizes 
the equation

• On K-map
– Draw Xs for don’t care combinations

• Include X in circle ONLY if minimizes 
equation

• Don’t include other Xs

X 0 0 0

00 01 11 10

1 X

0

1 0 0

F yz y’z’
x

X 0 0 0

00 01 11 10

1 X

0

1 0 0

F yz y’z’ unneeded

xy’

x

Good use of don’t cares

Unnecessary use of don’t 
cares; results in extra term
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Minimizization Example using Don’t Cares
• Minimize:

– F = a’bc’ + abc’ + a’b’c
– Given don’t cares: a’bc, abc

• Note: Use don’t cares with 
caution
– Must be sure that we really don’t 

care what the function outputs for 
that input combination

– If we do care, even the slightest, 
then it’s probably safer to set the 
output to 0

00 01 11 10

0

0 0

0

1

F bc
a

’ca b

a

1 1

1

X

X

F = a’c + b
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Minimization with Don’t Cares Example: 
Sliding Switch

• Switch with 5 positions
– 3-bit value gives position in 

binary

• Want circuit that 
– Outputs 1 when switch is in 

position 2, 3, or 4
– Outputs 0 when switch is in 

position 1 or 5
– Note that the 3-bit input can 

never output binary 0, 6, or 7
• Treat as don’t care input 

combinations

2,3,4,
detector

x

y

z

1 2 3 4 5

G

0 0 1 1

00 01 11 10

1 0

0

1 0 0

G yz
x x’y

xy’z’

Withou
t don’t 
cares: 
F = x’y
+ xy’z’

X 0 1 1

00 01 11 10

1 0

0

1 X X

G yz
x

y

z’

With don’t 
cares: 

F = y + z’

a

a
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Automating Two-Level Logic Size Minimization
• Minimizing by hand 

– Is hard for functions with 5 or 
more variables

– May not yield minimum cover 
depending on order we choose

– Is error prone 

• Minimization thus typically 
done by automated tools
– Exact algorithm: finds optimal 

solution
– Heuristic: finds good solution, 

but not necessarily optimal

1 1 1 0

00 01 11 10

1 0

0

1 1 1

I yz
x

y’z’ x’y’ yz

(a)

(b)
1 1 1 0

00 01 11 10

1 0

0

1 1 1

I yz
x

y’z’ x’z

xy
4 terms

xy
Only 3 terms

a

a
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Basic Concepts Underlying Automated Two-Level 
Logic Minimization

• Definitions
– On-set: All minterms that define 

when F=1
– Off-set: All minterms that define 

when F=0 
– Implicant: Any product term 

(minterm or other) that when 1 
causes F=1

• On K-map, any legal (but not 
necessarily largest) circle

• Cover: Implicant xy covers
minterms xyz and xyz’

– Expanding a term: removing a 
variable  (like larger K-map circle)

• xyz xy is an expansion of xyz

0 1 0 0

00 01 11 10

0 0

0

1 1 1

F yz
x

xy
xyz’
xyz

x’y’z

4 implicants of F
Note: We use K-maps here just for 
intuitive illustration of concepts; 
automated tools do not use K-maps.

• Prime implicant: Maximally 
expanded implicant – any 
expansion would cover 1s not in 
on-set
• x’y’z, and xy, above
• But not xyz or xyz’ – they can 

be expanded
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Basic Concepts Underlying Automated Two-Level 
Logic Minimization

• Definitions (cont)
– Essential prime implicant: The 

only prime implicant that covers a 
particular minterm in a function’s 
on-set

• Importance: We must include all
essential PIs in a function’s cover

• In contrast, some, but not all, non-
essential PIs will be included 

1 1 0

0

0

00 01 11 10

1

0

1 1 1

G yz
x

not essential

not essential
y’z

x’y’
xz xyessential

1

essential

1
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Automated Two-Level Logic Minimization Method

• Steps 1 and 2 are exact
• Step 3: Hard. Checking all possibilities: exact, but computationally 

expensive. Checking some but not all: heuristic. 
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Example of Automated Two-Level Minimization
• 1. Determine all 

prime implicants
• 2. Add essential PIs

to cover
– Italicized 1s are thus 

already covered
– Only one uncovered 

1 remains

• 3. Cover remaining 
minterms with non-
essential PIs
– Pick among the two 

possible PIs
1 1 1 0

00 01 11 10

1 0

0

1 0 1

I yz
x

y’z’

x’z

xz’

(c)

1 1 0

00 01 11 10

1 0

0

1 0 1

I yz
x

1 1 1 0

00 01 11 10

1 0

0

1 0 1

I yz
x

x’y’y’z’

x’z

xz’

(b)

x’y’y’z’

x’z

xz’

(a)
1

1

1
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Problem with Methods that Enumerate all Minterms or 
Compute all Prime Implicants

• Too many minterms for functions with many variables
– Function with 32 variables:

• 232 = 4 billion possible minterms. 
• Too much compute time/memory

• Too many computations to generate all prime implicants
– Comparing every minterm with every other minterm, for 32 

variables, is (4 billion)2 = 1 quadrillion computations
– Functions with many variables could requires days, months, years, 

or more of computation – unreasonable
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Solution to Computation Problem
• Solution

– Don’t generate all minterms or prime implicants
– Instead, just take input equation, and try to “iteratively” improve it
– Ex: F = abcdefgh + abcdefgh’+ jklmnop

• Note: 15 variables, may have thousands of minterms
• But can minimize just by combining first two terms:

– F = abcdefg(h+h’) + jklmnop =  abcdefg + jklmnop
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Two-Level Minimization using Iterative Method
• Method: Randomly apply “expand”

operations, see if helps
– Expand: remove a variable from a 

term
• Like expanding circle size on K-map

– e.g., Expanding x’z to z legal, but 
expanding x’z to z’ not legal, in shown 
function

– After expand, remove other terms 
covered by newly expanded term

– Keep trying (iterate) until doesn’t help

Ex:
F = abcdefgh + abcdefgh’+ jklmnop
F = abcdefg + abcdefgh’ + jklmnop
F = abcdefg + jklmnop

0 1 1 0

00 01 11 10

0 1

0

1 1 0

I yz
x

0 1 1 0

00 01 11 10

0 1

0

1 1 0

I yz
x

xy’z

x’z

xyz

z(a)

(b)

xyzxy’z

x’z

x’
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Multi-Level Logic Optimization – Performance/Size 
Tradeoffs

• We don’t always need the speed of two level logic
– Multiple levels may yield fewer gates
– Example

• F1 = ab + acd + ace    F2 = ab + ac(d + e) = a(b + c(d + e))
• General technique: Factor out literals – xy + xz = x(y+z)

a
c
e

c
a

a
b

d

4
F1

F2

F1 = ab + acd + ace
(a)

F2 = a(b+c(d+e))
(b) (c)

22 transistors
2 gate delays

16 transistors
4 gate-delays

a

b

c

d
e

F1

F2
20

15

10

5

si

z

e

(t

r

ansis

t

ors

)

1 2 3 4
delay (gate-delays)

4

4

4

4

4

6

6

6

si
ze

(tr
an

si
st

or
s)
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Multi-Level Example
• Q: Use multiple levels to reduce number of transistors for

– F1 = abcd + abcef

a

• A: abcd + abcef = abc(d + ef)
• Has fewer gate inputs, thus fewer transistors

a
b
c
e
f

b
c

a

d
F1

F2

F1 = abcd + abcef F2 = abc(d + ef)
(a) (b) (c)

22 transistors
2 gate delays

18 transistors
3 gate delays

a
b
c

d

e

f

F1
F2

20

15

10

5

)

1 2 3 4
delay (gate-delays)

4
6

4

4

8

10

4

si
ze

(tr
an

si
st

or
s)
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Multi-Level Example: Non-Critical Path
• Critical path: longest delay path to output
• Optimization: reduce size of logic on non-critical paths by using multiple 

levels

g
f

e
d

c

a
b

F1

F1 = (a+b)c + dfg + efg
(a) (c)

26 transistor s
3 gate-del ays

F1
F220

25

15

10
5

si
ze

(tr
an

sis
to

rs
)

1 2 3 4
delay (gate-del ays)

6

4

6

6

4

c

a
b

F2

F2 = (a+b)c + (d+e)fg
(b)

22 transistor s
3 gate-del ays

4

4

4

a
b
f
g

4

6
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Automated Multi-Level Methods
• Main techniques use heuristic iterative methods

– Define various operations
• “Factor out”: xy + xz = x(y+z)
• Expand, and others

– Randomly apply, see if improves
• May even accept changes that worsen, in hopes eventually leads to 

even better equation
• Keep trying until can’t find further improvement

– Not guaranteed to find best circuit, but rather a good one
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State Reduction (State Minimization)
6.3

x y

if x = 1,1,0,0
then y = 0,1,1,0,0

• Goal: Reduce number of states in FSM without changing 
behavior
– Fewer states potentially reduces size of state register

• Consider the two FSMs below with x=1, then 1, then 0, 0

x
state

y
x

state

y

S0 S0S1 S1S1 S1S2 S0S2 S0

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1

y=0 y=1

x’ x

x

x’

For the same sequence of inputs,
the output of the two FSMs is the same

a
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State Reduction: Equivalent States
Two states are equivalent if:
1. They assign the same values to 

outputs
– e.g. S0 and S2 both assign y to 0,
– S1 and S3 both assign y to 1

2. AND, for all possible sequences of 
inputs, the FSM outputs will be the 
same starting from either state
– e.g. say x=1,1,0,0,…

• starting from S1, y=1,1,0,0,…
• starting from S3, y=1,1,0,0,…

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

States S0 and S2 equivalent
States S1 and S3 equivalent

S0,
S2

S1,
S3

y=0 y=1

x’ x

x

x’

a
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State Reduction: Example with no Equivalencies
• Another example…
• State S0 is not equivalent with any 

other state since its output (y=0) 
differs from other states’ output S1

y=0 y=1

S2

y=1

S3

y=1

x x

x x

x’

x’

x’

x’

Inputs: x; Outputs: y

S0

• Consider state S1 and S3

S1

y=0 y=1

S2

y=1

S3

y=1

x x

x x

x’

x’

x’

x’

S0

Start from S1, x=0

S1

y=0 y=1

S2

y=1

S3

y=1

x x

x x

x’

x’

x’

x’

S0

Start from S3, x=0

– Outputs are initially the same (y=1)
– From S1, when x=0, go to S2 where y=1
– From S3, when x=0, go to S0 where y=0
– Outputs differ, so S1 and S3 are not 

equivalent.

a
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• State reduction through visual inspection (what we did in 
the last few slides) isn’t reliable and cannot be automated –
a more methodical approach is needed: implication tables

• Example:

State Reduction with Implication Tables

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y
Redundant

Diagonal

S0

S0 S1 S2 S3

S1

S2

S3

– To compare every pair of states, construct a 
table of state pairs (above right)

– Remove redundant state pairs, and state pairs 
along the diagonal since a state is equivalent 
to itself (right)

S0

S0 S1 S2 S3

S1

S2

S3

S0 S1 S2

S1

S2

S3
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• Mark (with an X) state pairs with different 
outputs as non-equivalent:

State Reduction with Implication Tables

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S1,S0): At S1, y=1 and at S0, y=0. So S1
and S0 are non-equivalent. 

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S2, S0): At S2, y=0 and at S0, y=0. So we 
don’t mark S2 and S0 now.

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S2, S1): Non-equivalent

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S3, S0): Non-equivalent

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S3, S1): Don’t mark

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

– (S3, S2): Non-equivalent

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

• We can see that S2 & S0 might be 
equivalent and S3 & S1 might be 
equivalent, but only if their next states are 
equivalent (remember the example from 
two slides ago)

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

a
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State Reduction with Implication Tables
• We need to check each unmarked state 

pair’s next states
• We can start by listing what each 

unmarked state pair’s next states are for 
every combination of inputs

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

– (S2, S0)
• From S2, when x=1 go to S3

From S0, when x=1 go to S1 (S3, S1)

So we add (S3, S1) as a next state pair
• From S2, when x=0 go to S2

From S0, when x=0 go to S0

(S2, S0)

So we add (S2, S0) as a next state pair
– (S3, S1)

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

• By a similar process, we add the next state 
pairs (S3, S1) and (S0, S2)

(S3, S1)
(S0, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

a



18

35
Digital Design
Copyright © 2006
Frank Vahid

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

State Reduction with Implication Tables
• Next we check every unmarked 

state pair’s next state pairs
• We mark the state pair if one of its 

next state pairs is marked
S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

– (S2, S0)

• So we do nothing and move on

• Next state pair (S3, S1) is not marked

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

• Next state pair (S2, S0) is not marked

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)– (S3, S1)

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

• Next state pair (S3, S1) is not marked
S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

• Next state pair (S0, S2) is not marked S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

• So we do nothing and move on
S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)
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State Reduction with Implication Tables
• We just made a pass through the 

implication table
– Make additional passes until no 

change occurs

• Then merge the unmarked state 
pairs – they are equivalent

S0 S1

y=0 y=1

S2

y=0

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

(S3, S1)
(S2, S0)

(S3, S1)
(S0, S2)

S0,S2 S1,S3

y=0 y=1

x’ x

x

x’
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State Reduction with Implication Tables
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S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

State Reduction Example
• Given FSM on the right

– Step 1: Mark state pairs having 
different outputs as nonequivalent

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

a
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S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

S0 S1 S2

S1

S2

S3

State Reduction Example
• Given FSM on the right

– Step 1: Mark state pairs having 
different outputs as nonequivalent 

– Step 2: For each unmarked state 
pair, write the next state pairs for the 
same input values

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

x=0
(S2, S2)

x’

x’

x=1(S2, S2)

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

x

x

(S3, S1)

x=0
(S2, S2)

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S3, S1)

x’

x’

(S0, S2)

x=1

S0 S1 S2

S1

S2

S3

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S0, S2)

x x

(S3, S1)

x=0

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S2, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)

(S0, S2)
(S3, S1)

x’ x’

(S0, S2)

x=1

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S2, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)

(S0, S2)
(S3, S1)

(S0, S2)

x

x

(S3, S3)

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

(S2, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)

(S0, S2)
(S3, S1)

(S0, S2)
(S3, S3)

a
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State Reduction Example
• Given FSM on the right

– Step 1: Mark state pairs having 
different outputs as nonequivalent 

– Step 2: For each unmarked state 
pair, write the next state pairs for the 
same input values

– Step 3: For each unmarked state 
pair, mark state pairs having 
nonequivalent next state pairs as 
nonequivalent.

• Repeat this step until no change 
occurs, or until all states are marked.

– Step 4: Merge remaining state pairs
All state pairs are marked –

there are no equivalent
state pairs to merge

(S2, S2)

S0 S1 S2

S1

S2

S3

(S3, S1)

(S0, S2)
(S3, S1)

(S0, S2)
(S3, S3)

S0 S1

y=0 y=1

S2

y=1

S3

y=1

x

x x

x’

x’

xx’ x’

Inputs: x; Outputs: y

a
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A Larger State Reduction Example

– Step 1: Mark state pairs having different outputs as 
nonequivalent 

– Step 2: For each unmarked state pair, write the next state 
pairs for the same input values

– Step 3: For each unmarked state pair, mark state pairs 
having nonequivalent next state pairs as nonequivalent.

• Repeat this step until no change occurs, or until all states 
are marked.

– Step 4: Merge remaining state pairs

S3 S0

y=0y=0

y=1 y=1

S1S2

S4x

x’ x’

x’x’ x’ x

x x

Inputs: x; Outputs: y

S2

S1

S3

S4

S0 S1 S2 S3

(S4,S2)
(S0,S1)

(S3,S2)
(S0,S1)

(S3,S4)
(S2,S1)

(S4,S3)
(S0,S0)

y=0

a
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S2

S1

S3

S4

S0 S1 S2 S3

(S4,S2)
(S0,S1)

(S3,S2)
(S0,S1)

(S3,S4)
(S2,S1)

(S4,S3)
(S0,S0)

A Larger State Reduction Example

– Step 1: Mark state pairs having different outputs as 
nonequivalent 

– Step 2: For each unmarked state pair, write the next state 
pairs for the same input values

– Step 3: For each unmarked state pair, mark state pairs 
having nonequivalent next state pairs as nonequivalent.

• Repeat this step until no change occurs, or until all states 
are marked.

– Step 4: Merge remaining state pairs

S3 S0

y=0y=0

y=1 y=1

S1S2

S4x

x’ x’

x’x’ x’ x

x x

Inputs: x; Outputs: y

y=0

y=0

y=0

y=1

S0 S1,S2

S3,S4

x

x

xx’

x’

x’

Inputs: x; Outputs: y a
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Need for Automation

x’
x’

x’

x’
x’

x’

x’

x'x’
x’

x’

x’

x’

x’

x’

x

x
x

x x

x

x
x

x

x
x

x

x
x

x
SO

SM

SI

SNSL

SJ

SK

SG

SH
SB

z=0

z=0

z=0

z=1

z=1

z=1

z=1

z=1

z=0

z=0

z=0z=0
z=1

z=0

z=1

SA

SDSC

SE

SF

Inputs: x; Outputs: z• Automation needed
– Table for large FSM too big for 

humans to work with
• n inputs: each state pair can have 2n

next state pairs. 
• 4 inputs 24=16 next state pairs

– 100 states would have table with 100*100=100,000 state pairs cells
– State reduction typically automated

• Often using heuristics to reduce compute time
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State Encoding
• Encoding: Assigning a unique 

bit representation to each state
• Different encodings may 

optimize size, or tradeoff size 
and performance

• Consider 3-Cycle Laser Timer…
– Example 3.7’s encoding: 15

gate inputs
– Try alternative encoding

• x = s1 + s0
• n1 = s0
• n0 = s1’b + s1’s0
• Only 8 gate inputs

11 10

00

01 10 11

b’

b

x=0

x=1 x=1 x=1

Inputs: b; Outputs: x

On1 On2 On3

Off

1
1
0
0

1
1

0
0

a

46
Digital Design
Copyright © 2006
Frank Vahid

State Encoding: One-Hot Encoding
• One-hot encoding

– One bit per state – a bit being ‘1’
corresponds to a particular state

– Alternative to minimum bit-width 
encoding in previous example

– For A, B, C, D: A: 0001, B: 0010, C: 
0100, D: 1000

• Example: FSM that outputs 0, 1, 1, 1
– Equations if one-hot encoding:

• n3 = s2;  n2 = s1;  n1 = s0;  x = s3 + 
s2 + s1

– Fewer gates and only one level of 
logic – less delay than two levels, so 
faster clock frequency

00

01

Inputs: none; Outputs: x
x=0

x=1

A

B

11

10

D

C

x=1

x=1

1000

0100

0001

0010

clk

s1

n1

x

s0
n0

State register
clk

n0

s3 s2 s1 s0

n1
n2

n3

State register

x

8
6
4
2

2 3 41
delay (gate-delays)

one-hot

binary

a
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One-Hot Encoding Example: 
Three-Cycles-High Laser Timer

• Four states – Use four-bit one-hot 
encoding
– State table leads to equations:

• x = s3 + s2 + s1
• n3 = s2
• n2 = s1
• n1 = s0*b
• n0 = s0*b’ + s3

– Smaller
• 3+0+0+2+(2+2) = 9 gate inputs
• Earlier binary encoding (Ch 3): 

15 gate inputs
– Faster 

• Critical path: n0 = s0*b’ + s3
• Previously: n0 = s1’s0’b + s1s0’
• 2-input AND slightly faster than 

3-input AND

0001

0010 0100 1000

b’

b

x=0

x=1 x=1 x=1

Inputs: b; Outputs: x

On1 On2 On3

Off

a
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Output Encoding
• Output encoding: Encoding 

method where the state 
encoding is same as the 
output values
– Possible if enough outputs, all 

states with unique output values

00

01

Inputs: none; Outputs: x,y
xy=00

xy=11

A

B

11

10

D

C

xy=01

xy=10

Use the output values 
as the state encoding

a
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Output Encoding Example: Sequence Generator

• Generate sequence 0001, 0011, 1110, 
1000, repeat
– FSM shown

• Use output values as state encoding
• Create state table
• Derive equations for next state

– n3 = s1 + s2; n2 = s1; n1 = s1’s0; n0 = s1’s0 
+ s3s2’

Inputs: none; Outputs: w, x, y, z
wxyz=0001

wxyz=0011

A

B

D

C

wxyz=1000

wxyz=1100

clk

n0

s3 s2 s1 s0

n1n2n3

State register

w
x
y
z
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Moore vs. Mealy FSMs

• FSM implementation architecture
– State register and logic
– More detailed view

• Next state logic – function of present state and FSM 
inputs

• Output logic
– If function of present state only – Moore FSM
– If function of present state and FSM inputs – Mealy FSM

clk

I O

State register

Combinational
logic

S

N clk

I

O

State register

Next-state
logic

Output
logic

FSM
outputs

FS
M

in
pu

ts

N

S

(a)

clk

I

O

State register

Next-state
logic

Output
logic

FSM
outputs

FS
M

in
pu

ts

N

S

(b)

Mealy FSM a dds thi s

Moore Mealy

/x=0

b/x=1
b’/x=0

Inputs: b; Outputs: x

S1S0

Graphically: show outputs with 
arcs, not with states

a
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Mealy FSMs May Have Fewer States

• Soda dispenser example: Initialize, wait until enough, dispense
– Moore: 3 states;   Mealy: 2 states

Moore Mealy

Inputs: enough (bit)
Outputs: d, clear (bit)

Wait

Disp

Init
enough’

enoughd=0
clear=1

d=1

Inputs: enough (bit)
Outputs: d, clear (bit)

WaitInit

enough’

enough/d=1

clk

Inputs: enough
State:

Outputs: clear
d

I IW W D

(a)

clk

Inputs: enough
State:

Outputs: clear
d

I IW W

(b)

/d=0, clear=1
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Mealy vs. Moore
• Q: Which is Moore, 

and which is Mealy?

Inputs: b; Outputs: s1, s0, p

Time

Alarm

Date

Stpwch

b’/s1s0=00, p=0

b/s1s0=00, p=1

b/s1s0=01, p=1

b/s1s0=10, p=1

b/s1s0=11, p=1

b’/s1s0=01, p=0

b’/s1s0=10, p=0

b’/s1s0=11, p=0

Inputs: b; Outputs: s1, s0, p

Time

S2

Alarm

b

b

b

b

b

b

b

s1s0=00, p=0

s1s0=00, p=1

s1s0=01, p=0

s1s0=01, p=1

s1s0=10, p=0

s1s0=10, p=1

s1s0=11, p=0

s1s0=11, p=1

S4

Date

S6

Stpwch

S8

b’

b’

b’

b’

Mealy

Moore

• A:  Mealy on left, 
Moore on right
– Mealy outputs on 

arcs, meaning 
outputs are function 
of state AND 
INPUTS

– Moore outputs in 
states, meaning 
outputs are function 
of state only 
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Mealy vs. Moore Example: Beeping Wristwatch
• Button b 

– Sequences mux select lines 
s1s0 through 00, 01, 10, and 
11

• Each value displays different 
internal register

– Each unique button press 
should cause 1-cycle beep, 
with p=1 being beep

• Must wait for button to be 
released (b’) and pushed 
again (b) before sequencing

• Note that Moore requires 
unique state to pulse p, while 
Mealy pulses p on arc

• Tradeoff: Mealy’s pulse on p
may not last one full cycle

Mealy

Moore

Inputs: b; Outputs: s1, s0, p

Time

Alarm

Date

Stpwch

b’/s1s0=00, p=0

b/s1s0=00, p=1

b/s1s0=01, p=1

b/s1s0=10, p=1

b/s1s0=11, p=1

b’/s1s0=01, p=0

b’/s1s0=10, p=0

b’/s1s0=11, p=0

Inputs: b; Outputs: s1, s0, p

Time

S2

Alarm

b

b

b

b

b

b

b

s1s0=00, p=0

s1s0=00, p=1

s1s0=01, p=0

s1s0=01, p=1

s1s0=10, p=0

s1s0=10, p=1

s1s0=11, p=0

s1s0=11, p=1

S4

Date

S6

Stpwch

S8

b’

b’

b’

b’
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Mealy vs. Moore Tradeoff
• Mealy outputs change mid-cycle if input changes

– Note earlier soda dispenser example
• Mealy had fewer states, but output d not 1 for full cycle

– Represents a type of tradeoff

Moore Mealy

Inputs: enough (bit)
Outputs: d, clear (bit)

Wait

Disp

Init
enough’

enoughd=0
clear=1

d=1

Inputs: enough (bit)
Outputs: d, clear (bit)

WaitInit

enough’

enough/d=1

clk

Inputs: enough
State:

Outputs: clear
d

I IW W D

(a)

clk

Inputs: enough
State:

Outputs: clear
d

I IW W

(b)

/d=0, clear=1
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Implementing a Mealy FSM
• Straightforward

– Convert to state table
– Derive equations for each 

output
– Key difference from 

Moore: External outputs 
(d, clear) may have 
different value in same 
state, depending on input 
values 

Inputs: enough (bit)
Outputs: d, clear (bit)

WaitInit

enough’/d=0

enough/d=1

/ d=0, clear=1
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Mealy and Moore can be Combined
• Final note on Mealy/Moore

– May be combined in same FSM

Inputs: b; Outputs: s1, s0, p

Time

Alarm

Date

Stpwch

b’/p=0

b/p=1
s1s0=00

s1s0=01
b/p=1

b/p=1
s1s0=10

b/p=1
s1s0=11

b’/p=0

b’/p=0

b’/p=0

Combined 
Moore/Mealy 

FSM for beeping 
wristwatch 
example
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Datapath Component Tradeoffs
• Can make some components faster (but bigger), or smaller (but 

slower), than the straightforward components we built in Ch 4
• We’ll build

– A faster (but bigger) adder than the carry-ripple adder
– A smaller (but slower) multiplier than the array-based multiplier

• Could also do for the other Ch 4 components

6.4
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Faster Adder
• Built carry-ripple adder in Ch 4

– Similar to adding by hand, column by column
– Con: Slow

• Output is not correct until the carries have 
rippled to the left

• 4-bit carry-ripple adder has 4*2 = 8 gate delays
– Pro: Small 

• 4-bit carry-ripple adder has just 4*5 = 20 gates

FA

a3

co s3

b3

FA

a0 b0 ci

FA

a2

s2 s1 s0

b2

FA

a1b1

c3carries:

b3

a3

s3

c2

b2

a2

s2

c1

b1

a1

s1

cin

b0

a0

s0

+

cout

A:

B:

a3 b3 a2 b2 a1 b1 a0 b0 cin

s3 s2 s1 s0cout
4-bit adder

a

a
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Faster Adder
• Faster adder – Use two-level 

combinational logic design process
– Recall that 4-bit two-level adder was big
– Pro: Fast 

• 2 gate delays
– Con: Large

• Truth table would have 2(4+4) =256 rows
• Plot shows 4-bit adder would use about 

500 gates

• Is there a compromise design?
– Between 2 and 8 gate delays
– Between 20 and 500 gates

10000
8000
6000
4000

2000
0 1 2 3 4 5

N
6 7 8

T

r

ansis

t

ors

a3

co s3

b3 a0 b0 cia2

s2 s1 s0

b2 a1b1

Two-level: AND level 
followed by ORs
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FA

a3

co s3

b3

FA

a0 b0 ci

FA

a2

s2 s1 s0

b2

FA

a1b1

a

Faster Adder – (Bad) Attempt at “Lookahead”
• Idea

– Modify carry-ripple adder – For a stage’s carry-in, don’t wait for carry 
to ripple, but rather directly compute from inputs of earlier stages

• Called “lookahead” because current stage “looks ahead” at previous 
stages rather than waiting for carry to ripple to current stage

FA

c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0b0b1b2b3 a0a1a2a3

stage 0
cout

look
ahead

look
ahead

look
ahead

Notice – no rippling of carry



31

61
Digital Design
Copyright © 2006
Frank Vahid

FA

a3

co s3

b3

FA

a0b0 c0

FA

a2

s2 s1 s0

b2

FA

a1b1

a

Faster Adder – (Bad) Attempt at “Lookahead”

Stage 0: Carry-in is already an 
external input: c0

co0

c1

Stage 1: c1=co0
co0= b0c0 + a0c0 + a0b0

c1 = b0c0 + a0c0 + a0b0

co1

c2

Stage 2: c2=co1
co1 = b1c1 + a1c1 + a1b1

c2 = b1c1 + a1c1 + a1b1

• Recall full-adder equations: 
– s = a xor b
– c = bc + ac + ab

• Want each stage’s carry-in bit to be function of external inputs only (a’s, b’s, or c0)

c2 = b1(b0c0 + a0c0 + a0b0) + a1(b0c0 + a0c0 + a0b0) +a1b1
c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1

FA

c4

c3 c2

s3 s2

stage 3 stage 2

c1

s1

stage 1

c0

s0

c0b0b1b2b3 a0a1a2a3

stage 0

look
ahead

look
ahead

look
ahead

cout

Continue for c3

c3

co2
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Faster Adder – (Bad) Attempt at “Lookahead”

c1 = b0c0 + a0c0 + a0b0

• Carry lookahead logic 
function of external inputs
– No waiting for ripple

• Problem
– Equations get too big
– Not efficient
– Need a better form of 

lookahead

c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1

FA
c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0b0b1b2b3 a0a1a2a3

stage 0

look
ahead

look
ahead

look
ahead

cout

c3 = b2b1b0c0 + b2b1a0c0 + b2b1a0b0 + b2a1b0c0 + b2a1a0c0 + b2a1a0b0 + b2a1b1 + 
a2b1b0c0 + a2b1a0c0 + a2b1a0b0 + a2a1b0c0 + a2a1a0c0 + a2a1a0b0 + a2a1b1 + a2b2
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Better Form of Lookahead
• Have each stage compute two terms

– Propagate: P = a xor b
– Generate: G = ab

• Compute lookahead from P and G terms, not from external inputs
– Why P & G? Because the logic comes out much simpler

• Very clever finding; not particularly obvious though
• Why those names?

– G: If a and b are 1, carry-out will be 1 – “generate” a carry-out of 1 in this case
– P: If only one of a or b is 1, then carry-out will equal the carry-in – propagate the 

carry-in to the carry-out in this case

(a)

b3
a3
s3

b2
a2
s2

b1
a1
s1

b0
a0
s0

1
1
0

01carries: c4   c3   c2   c1   c0
B:
A: + +
cout

cin

1
1
1

11

+
0
1
0

11

+
1
0
0

11

+

c1
c0
b0
a0

if a0xor b0 = 1
then c1 = 1 if c0 = 1

(call this P: Propagate)

if a0b0 = 1
then c1 = 1

(call this G:Generate)
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“Bad” lookahead

FA
c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0b0b1b2b3 a0a1a2a3

stage 0

look
ahead

look
ahead

look
ahead

cout

Better Form of Lookahead

• With P & G, the carry lookahead
equations are much simpler
– Equations before plugging in

• c1 = G0 + P0c0
• c2 = G1 + P1c1
• c3 = G2 + P2c2
• cout = G3 + P3c3

After plugging in:

c1 = G0 + P0c0

c2 = G1 + P1c1 = G1 + P1(G0 + P0c0)
c2 = G1 + P1G0 + P1P0c0

c3 = G2 + P2c2 = G2 + P2(G1 + P1G0 + P1P0c0)
c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0

cout = G3 + P3G2 + P3P2G1 + P3P2P1G0 + 
P3P2P1P0c0

Much simpler than the “bad” lookahead

a

a

Carry-lookahead logic
G3

a3 b3

P3 c3

cout s3

G2

a2 b2

P2 c2

s2

G1

a1 b1

P1 c1

s1

G0

a0 b0 cin

P0 c0

s0(b)

Half-adder Half-adder Half-adder Half-adder
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Better Form of Lookahead

Carry-lookahead logicG3

a3 b3

P3 c3

cout s3

G2

a2 b2

P2 c2

s2

G1

a1 b1

P1 c1

s1

G0

a0 b0 cin

P0 c0

s0(b)

Half-adder Half-adder Half-adder Half-adder

c1 = G0 + P0c0
c2 = G1 + P1G0 + P1P0c0

c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0
cout = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0

(c)

SPG
block

C
al

l t
hi

s 
su

m
/p

ro
pa

ga
te

/g
en

er
at

e 
(S

P
G

) b
lo

ck

G3P3 G2P2 G1 G0 c0P1 P0
Carry-loo kahead logic

Stage 4 Stage 3 Stage 2 Stage 1

a

a
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Carry-Lookahead Adder -- High-Level View

• Fast -- only 4 gate delays
– Each stage has SPG block with 2 gate levels
– Carry-lookahead logic quickly computes the 

carry from the propagate and generate bits 
using  2 gate levels inside

• Reasonable number of gates -- 4-bit adder 
has only 26 gates

a3 b3

a b

P G

cout

cout

G3P3

cin

a2 b2

a b

P G

G2P2c3

cin
SPG block SPG block

a1 b1

a b

P G

G1P1c2 c1

cin
SPG block

a0 b0 c0

a b

P G

G0P0

cin
SPG block

4-bit carry-lookahead logic

s3 s2 s1 s0

• 4-bit adder comparison
(gate delays, gates)
– Carry-ripple: (8, 20)
– Two-level: (2, 500)
– CLA: (4, 26)

o Nice compromise
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Carry-Lookahead Adder – 32-bit?
• Problem: Gates get bigger in each stage

– 4th stage has 5-input gates
– 32nd stage would have 33-input gates

• Too many inputs for one gate
• Would require building from smaller gates, 

meaning more levels (slower), more gates 
(bigger)

• One solution: Connect 4-bit CLA adders in 
ripple manner
– But slow (4 + 4 + 4 + 4 gate delays)

Stage 4

Gates get bigger
in each stage

a3a2a1a0 b3

s3s2s1s0cout

cout

cin
b2b1b0

4-bit adder
a3a2a1a0 b3

s3s2s1s0

s11-s8s15-s12

a15-a12 b15-b12 a11-a8 b11-b8

cout
cin

b2b1b0
4-bit adder

a3a2a1a0 b3

s3s2s1s0cout

s7s6s5s4

cin
b2b1b0

a7a6a5a4 b7b6b5b4

4-bit adder
a3a2a1a0 b3

s3s2s1s0

s3s2s1s0

cout
cin

b2b1b0

a3a2a1a0 b3b2b1b0

4-bit adder
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Hierarchical Carry-Lookahead Adders
• Better solution -- Rather than rippling the carries, just repeat the carry-

lookahead concept
– Requires minor modification of 4-bit CLA adder to output P and G

a3a2a1a0 b3

s3s2s1s0

cout

cout
cin

b2b1b0
4-bit adder

a3a2a1a0 b3

a15-a12 b15-b12 a11-a8 b11-b8

cin
b2b1b0

4-bit adder

4-bit carry-lookahead logic

a3a2a1a0 b3

s3s2s1s0
cin

b2b1b0

a7a6a5a4 b7b6b5b4

4-bit adder
a3a2a1a0 b3

s3s2s1s0
cin

b2b1b0

a3a2a1a0 b3b2b1b0

4-bit adder
s3s2s1s0P G

P G

P3G3

coutP G

P2c3 G2

coutP G

P1c2 G1

coutP G

P0c1 G0

s15-s12 s11-s18 s7-s4 s3-s0

These use carry-lookahead internally

Second level of carry-lookahead

a

G3P3 G2P2 G1 G0 c0P1 P0
Carry lookahead logic

Stage 4 Stage 3 Stage 2 Stage 1

Same lookahead logic as 
inside the 4-bit adders

cout c3 c2 c1
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Hierarchial Carry-Lookahead Adders
• Hierarchical CLA concept can be applied for larger adders
• 32-bit hierarchical CLA

– Only about 8 gate delays (2 for SPG block, then 2 per CLA level)
– Only about 14 gates in each 4-bit CLA logic block

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

2-bit
CLA
logic

4-bit
CLA
logic

4-bit
CLA
logic

P G c
SPG block

P

P P

P P P P P P P
G

G G

G G G G G G G
c

c c

c c c c c c c

Q: How many gate 
delays for 64-bit 
hierarchical CLA, 
using 4-bit CLA logic?

A: 16 CLA-logic blocks 
in 1st level, 4 in 2nd, 1 
in 3rd -- so still just 8 
gate delays (2 for 
SPG, and 2+2+2 for 
CLA logic). CLA is a 
very efficient method.

a
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Carry Select Adder
• Another way to compose adders

– High-order stage -- Compute result for carry in of 1 and of 0
• Select based on carry-out of low-order stage
• Faster than pure rippling

a3 a2 a1 a0

a7 a6 a5a4 b7b6b5b4

b3

s3 s2 s1 s0co
ciHI4_1 HI4_0

b2b1b0
4-bit adder

a3 a2 a1 a0 b3

s3 s2 s1 s0co

co s7 s6

Q

s5 s4

cin LO4
b2b1b0

4-bit adder
a3 a2 a1 a0 b3

s3 s2 s1 s0co

s3 s2 s1 s0

ci
b2b1b0

a3 a2 a1 a0 b3b2b1b0

4-bit adder1 0 ci

I1 I0
5-bit wide 2⋅ 1 mux S

Operate in parallel

suppose =1
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Adder Tradeoffs

• Designer picks the adder that satisfies particular delay and 
size requirements
– May use different adder types in different parts of same design

• Faster adders on critical path, smaller adders on non-critical path

delay

carry-select
carry-
ripple

carry-lookahead

multilevel
carry-lookahead

si
ze
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Smaller Multiplier

+ (5-bit)

+ (6-bit)

+ (7-bit)

0 0

0 00

0

a0a1a2a3

b0

b1

b2

b3

0

p7..p0

pp
1

pp
2

pp
3

pp
4

32-bit adder would have 1024 gates here ...

... and 31 adders
here (big ones, too)

• Multiplier in Ch 4 was array style
– Fast, reasonable size for 4-bit: 4*4 = 16 partial product AND terms, 3 adders
– Rather big for 32-bit: 32*32 = 1024 AND terms, and 31 adders

a

a
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Smaller Multiplier -- Sequential (Add-and-Shift) Style

• Smaller multiplier: Basic idea
– Don’t compute all partial products simultaneously
– Rather, compute one at a time (similar to by hand), maintain 

running sum

0 1 1 0
0 0 11

0 0 0 0

+

Step 1

0 1 1 0
0 1 0 0 1 0
+

0 1 1 0
0 01 1

0 0 1 1 0

+

Step 2

0 0 0 0
0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 1 0 0 1 0

+

Step 3

0 0 0 0
0 0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 0 1 0 0 1 0

+

Step 4

0 1 1 0+(partial product)
0 0 1 1 0(new running sum)

(running sum)

a
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Smaller Multiplier -- Sequential (Add-and-Shift) Style

• Design circuit that 
computes one partial 
product at a time, adds to 
running sum
– Note that shifting

running sum right 
(relative to partial 
product) after each step 
ensures partial product 
added to correct running 
sum bits

0 1 1 0
0 0 1 1
0 0 0 0

+

Step 1

0 1 1 0
0 1 0 0 1 0
+

0 1 1 0
0 01 1

0 0 1 1 0
+

Step 2

0 0 0 0
0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 1 0 0 1 0
+

Step 3

0 0 0 0
0 0 0 1 0 0 1 0
+

0 1 1 0
0 0 1 1

0 0 1 0 0 1 0
+

Step 4

0 1 1 0+ (partial product)
0 0 1 1 0 (new running sum)

(running sum)

mr3

mrld

mdld

mr2
mr1
mr0
rsload
rsclear
rsshr

start

load

load
clear
shr

product

running sum
register (8)

multiplier
register (4)

multiplier

multiplicand
register (4)

multiplicand

load

c

o

n

t

r

oller

4-bit adder

a
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Smaller Multiplier -- Sequential Style:  Controller

• Wait for start=1
• Looks at multiplier one bit at a 

time
– Adds partial product 

(multiplicand) to running sum if 
present multiplier bit is 1

– Then shifts running sum right 
one position

mr3

mrld

mdld

mr2
mr1
mr0
rsload
rsclear
rsshr

start

load

load
clear
shr

product

running sum
register (8)

multiplier
register (4)

multiplier

multiplicand
register (4)

multiplicand

load

co
ntr

oll
er 4-bit adder

start’

mr0’

mr0 mr1 mr2 mr3

mr1’ mr2’ mr3’

start

start

mdld = 1
mrld = 1
rsclear = 1

rsshr=1 rsshr=1 rsshr=1 rsshr=1

rsload=1 rsload=1rsload=1rsload=1

controller

mr3

mrld
mdld

mr2
mr1
mr0
rsload
rsclear
rsshr

Vs. array-style:
Pro: small

• Just three registers, 
adder, and controller

Con: slow
• 2 cycles per multiplier 
bit
• 32-bit: 32*2=64 cycles 
(plus 1 for init.)

a

0110

0011

00000000

a

011000000011000010010000010010000010010000010010

Correct product

a
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RTL Design Optimizations and Tradeoffs
• While creating datapath during RTL design, there are 

several optimizations and tradeoffs, involving
– Pipelining
– Concurrency
– Component allocation
– Operator binding
– Operator scheduling
– Moore vs. Mealy high-level state machines

6.5
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Pipelining
• Intuitive example: Washing dishes 

with a friend, you wash, friend dries
– You wash plate 1
– Then friend dries plate 1, while you wash 

plate 2
– Then friend dries plate 2, while you wash 

plate 3;  and so on
– You don’t sit and watch friend dry; you 

start on the next plate

• Pipelining: Break task into stages, 
each stage outputs data for next 
stage, all stages operate concurrently 
(if they have data)

W1 W2 W3D1 D2 D3

Without pipelining:

With pipelining:

“Stage 1”

“Stage 2”

Time 

W1

D1

W2

D2

W3

D3

a
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Pipelining Example

• S = W+X+Y+Z
• Datapath on left has critical path of 4 ns, so fastest clock period is 4 ns

– Can read new data, add, and write result to S, every 4 ns
• Datapath on right has critical path of only 2 ns

– So can read new data every 2 ns – doubled performance (sort of...)

W X Y Z

2ns 2ns

2ns

+ +

+

S

clk

2ns 2ns

2ns

Longest path
is only 2 ns

stage 2

stage 1

clk

S S(0)

So minimum clock
period is 2ns

S(1)

clk

S S(0)

So minimum clock
period is 4ns

S(1)

Longest path
is 2+2 = 4 ns

W X Y Z

+ +

+

S

clk

2ns

pipeline
registers

S
ta

ge
 1

S
ta

ge
 2

a



40

79
Digital Design
Copyright © 2006
Frank Vahid

Pipelining Example

• Pipelining requires refined definition of performance
– Latency: Time for new data to result in new output data (seconds)
– Throughput: Rate at which new data can be input (items / second)
– So pipelining above system

• Doubled the throughput, from 1 item / 4 ns, to 1 item /  2 ns
• Latency stayed the same: 4 ns

W X Y Z

2n
s

2n
s

2n
s

+ +

+

S

clk

clk

S S(0)

So mininum clock
period is4 ns

S(1)

Longest path
is 2+2 = 4 ns

W X Y Z

2n
s

2n
s

2n
s

+ +

+

S

clk

clk

S S(0)

So mininum clock
period is2 ns

S(1)

Longest path
is only 2 ns
pipeline
registers

st
ag

e 
2

st
ag

e 
1

(a) (b)
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Pipeline Example: FIR Datapath
• 100-tap FIR filter: Row of 

100 concurrent multipliers, 
followed by tree of adders
– Assume 20 ns per multiplier
– 14 ns for entire adder tree
– Critical path of 20+14 = 34 ns

• Add pipeline registers
– Longest path now only 20 ns
– Clock frequency can be nearly 

doubled
• Great speedup with minimal 

extra hardware

⋅ ⋅

+ +

+

multipliers

adder tree

xt registers

X

yreg

Y

14
 n

s
20

 n
s

st
ag

e 
2

st
ag

e 
1

pipeline
registers
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Concurrency
• Concurrency: Divide task into 

subparts, execute subparts 
simultaneously
– Dishwashing example: Divide stack 

into 3 substacks, give substacks to 
3 neighbors, who work 
simultaneously -- 3 times speedup 
(ignoring time to move dishes to 
neighbors' homes)

– Concurrency does things side-by-
side; pipelining instead uses stages 
(like a factory line)

– Already used concurrency in FIR 
filter -- concurrent multiplications 

* * *

Task

Pipelining

Concurrencya

Can do both, too
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Concurrency Example: SAD Design Revisited
• Sum-of-absolute differences video compression example (Ch 5)

– Compute sum of absolute differences (SAD) of 256 pairs of pixels
– Original : Main loop did 1 sum per iteration, 256 iterations, 2 cycles per iter. 

i_lt_256

i_inc

i_clr

sum_ld

sum_clr

sad_reg_ld

Datapath

sum

sad_reg

sad

AB_addr A_data B_data

<256
9

32

8

8

8 8

3232

32

i –

+

abs

!goS0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_reg=sum

S2

i<256

(i<256)’

-/abs/+ done in 1 cycle, 
but done 256 times

256 iters.*2 cycles/iter. = 512 cycles
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Concurrency Example: SAD Design Revisited
• More concurrent design

– Compute SAD for 16 pairs concurrently, do 16 times to compute all 
16*16=256 SADs.  

– Main loop does 16 sums per iteration, only 16 iters., still 2 cycles per iter. 
go AB_rd AB_addr

AB_rd=1

S0

S1

S2

S4

!(i_lt_16)

go
!go

sum_clr=1
i_clr=1

sum_ld=1

sad_reg_ld=1

i_inc=1

i_lt_16

Controller Datapath

sad

sad_reg

sum

i

<16
i_lt_16

i_clr

sum_ld

sum_clr

sad_reg_ld

i_inc

A0 B0 A1 A14 A15B1 B14 B15

– – – –
16 subtractors

abs abs abs abs
16 absolute 

values

+ +

+ +

Adder tree to 
sum 16 values

i_
lt_

16
’

a

All -/abs/+’s shown done in 1 
cycle, but done only 16  times

O
rig

: 2
56

*2
 =

 5
12

 c
yc

le
s

N
ew

: 1
6*

2 
= 

32
 c

yc
le

s

a
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Concurrency Example: SAD Design Revisited
• Comparing the two designs

– Original: 256 iterations * 2 cycles/iter = 512 cycles
– More concurrent: 16 iterations * 2 cycles/iter = 32 cycles
– Speedup: 512/32 = 16x speedup

• Versus software
– Recall: Estimated about 6 microprocessor cycles per iteration

• 256 iterations * 6 cycles per iteration  = 1536 cycles
• Original design speedup vs. software: 1536 / 512 = 3x

– (assuming cycle lengths are equal)
• Concurrent design’s speedup vs. software: 1536 / 32 = 48x

– 48x is very significant – quality of video may be much better

!(i_lt_16)
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Component Allocation
• Another RTL tradeoff: Component allocation – Choosing a particular 

set of functional units to implement a set of operations
– e.g., given two states, each with multiplication

• Can use 2 multipliers (*)
• OR, can instead use 1 multiplier, and 2 muxes
• Smaller size, but slightly longer delay due to the mux delay

A B

t1 = t2*t3 t4 = t5*t6

∗

t2

t1

t3

∗

t5

t4

t6

(a)

FSM-A: (t1ld=1) B: (t4ld=1)

∗

2×1

t4t1
(b)

2×1sl

t2 t5 t3 t6

sr

A: (sl=0; sr=0; t1ld=1)
B: (sl=1; sr=1; t4ld=1)

(c)

2 mul

1 mul

delay

a
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Operator Binding
• Another RTL tradeoff: Operator binding – Mapping a set of operations 

to a particular component allocation
– Note: operator/operation mean behavior (multiplication, addition), while 

component (aka functional unit) means hardware (multiplier, adder)
– Different bindings may yield different size or delay

Binding 2si

z

e

A B

t1 = t2* t3 t4 = t5* t6 t7 = t8* t3

C A B

t1 = t2* t3 t4 = t5* t6 t7 = t8* t3

C

MULA MULB

2x1

t7t4

2x1

t5t3t2 t8 t6 t3

sr

t1

sl 2x1

t2 t8 t3

sl

t6t5

t7t1 t4

MULBMULA
2 multipliers 
allocated

Binding 1 Binding 2

Binding 1

delay

si
ze2 muxes

vs.
1 mux

a
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Operator Scheduling
• Yet another RTL tradeoff: Operator scheduling –

Introducing or merging states, and assigning operations to 
those states.

si

z

e

*

t3t2

*

t1

t6t5

*

t4

B2

(some
operations)

(some
operations)

t1 = t2* t3
t4 = t5* t6

A B C

*t4 = t5 t6

3-state schedule

delay

si
ze

2x1

t4t1

2x1

t2 t5 t3 t6

srsl

4-state schedule

smaller
(only 1 *)

but more 
delay due to 

muxes

a

A B

(some
operations)

(some
operations)

t1 = t2*t3
t4 = t5*t6

C
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Operator Scheduling Example: Smaller FIR Filter
• 3-tap FIR filter design in Ch 5: Only one state – datapath computes new 

Y every cycle
– Used 3 multipliers and 2 adders; can we reduce the design’s size?

xt0 xt1 xt2

x(t-2)x(t-1)x(t)

3-tap FIR filter

X

Y

clk

c0 c1 c2

* *

+

*

+

3
2
1
0

2x4

yreg

e
Ca1

CL

C

Ca0

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

Inputs: X (N bits)
Outputs: Y (N bits)
Local registers:

xt0, xt1, xt2 (N bits)

S1
xt0 = X
xt1 = xt0
xt2 = xt1
Y = xt0*c0

+ xt1*c1
+ xt2*c2
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Operator Scheduling Example: Smaller FIR Filter
• Reduce the design’s size by re-scheduling the operations

– Do only one multiplication operation per state

a

y(t) = c0*x(t) + c1*x(t-1) + c2*x(t-2)

Inputs: X (N bits)
Outputs: Y (N bits)
Local registers:

xt0, xt1, xt2 (N bits)

S1

(a)

xt0 = X
xt1 = xt0
xt2 = xt1
Y = xt0*c0

+ xt1*c1
+ xt2*c2

Inputs: X (N bits)
Outputs: Y (N bits)
Local registers:

xt0, xt1, xt2, sum (N bits)

S1

S2

S3

S4

S5

sum = sum + xt0 * c0

sum = 0
xt0 = N
xt1 = xt0
xt2 = xt1

sum = sum +xt1 * c1

sum = sum + xt2 * c2

Y = sum

(b)
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Operator Scheduling Example: Smaller FIR Filter
• Reduce the design’s size by re-scheduling the operations

– Do only one multiplication (*) operation per state, along with sum (+)

a

Inputs: X (N bits)
Outputs: Y (N bits)
Local registers:

xt0, xt1, xt2, sum (N bits)

S1

S2

S3

S4

S5

sum = sum + xt0 * c0

sum = 0
xt0 = X
xt1 = xt0
xt2 = xt1

sum = sum + xt1 * c1

sum = sum + xt2 * c2

Y = sum sum

*

+

yreg

c2c1c0xt0 xt1 xt2X
clk

x_ld

y_ld

Y

mul_s0
3x1 3x1

mul_s1

MAC
Multiply-
accumulate: a 
common datapath
component
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Operator Scheduling Example: Smaller FIR Filter
• Many other options exist 

between fully-concurrent and 
fully-serialized
– e.g., for 3-tap FIR, can use 1, 2, 

or 3 multipliers
– Can also choose fast array-style 

multipliers (which are concurrent 
internally) or slower shift-and-
add multipliers (which are 
serialized internally)

– Each options represents 
compromises 

concurrent FIR

compromises

serial
FIR

delay

si
ze
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More on Optimizations and Tradeoffs
• Serial vs. concurrent computation has been a common tradeoff 

theme at all levels of design
– Serial: Perform tasks one at a time
– Concurrent: Perform multiple tasks simultaneously

• Combinational logic tradeoffs
– Concurrent: Two-level logic (fast but big)
– Serial: Multi-level logic (smaller but slower)

• abc + abd + ef (ab)(c+d) + ef – essentially computes ab first (serialized)
• Datapath component tradeoffs

– Serial: Carry-ripple adder (small but slow)
– Concurrent: Carry-lookahead adder (faster but bigger)

• Computes the carry-in bits concurrently
– Also multiplier: concurrent (array-style) vs. serial (shift-and-add)

• RTL design tradeoffs
– Concurrent: Schedule multiple operations in one state
– Serial: Schedule one operation per state

6.6



47

93
Digital Design
Copyright © 2006
Frank Vahid

Higher vs. Lower Levels of Design
• Optimizations and tradeoffs at higher levels typically have 

greater impact than those at lower levels
– RTL decisions impact size/delay more than gate-level decisions

delay

siz
e

(a) (b)

high-level changes

land

Spotlight analogy: The lower you 
are, the less solution landscape is 
illuminated (meaning possible)
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Algorithm Selection
• Chosen algorithm can have big impact

– e.g., which filtering algorithm?
• FIR is one type, but others require less computation at 

expense of lower-quality filtering
• Example: Quickly find item’s address in 256-word 

memory 
– One use: data compression. Many others. 
– Algorithm 1: “Linear search”

• Compare item with M[0], then M[1], M[2], ...
• 256  comparisons worst case

– Algorithm 2: “Binary search” (sort memory first)
• Start considering entire memory range

– If M[mid]>item, consider lower half of M
– If M[mid]<item, consider upper half of M
– Repeat on new smaller range
– Dividing range by 2 each step; at most 8 such divisions

• Only 8 comparisons in worst case
• Choice of algorithm has tremendous impact

– Far more impact than say choice of comparator type

0x00000000
0x00000001
0x0000000F2:

96:
128:

255:

3:

1:
0:

0x000000FF

0x00000F0A
0x0000FFAA

0xFFFF0000

256x32 memory

128

96

64

Linear 
search

Binary 
search

a
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Power Optimization
• Until now, we’ve focused on size and delay
• Power is another important design criteria

– Measured in Watts (energy/second)
• Rate at which energy is consumed

• Increasingly important as more transistors fit on a 
chip

– Power not scaling down at same rate as size
• Means more heat per unit area – cooling is difficult
• Coupled with battery’s not improving at same rate

– Means battery can’t supply chip’s power for as long

– CMOS technology: Switching a wire from 0 to 1 
consumes power (known as dynamic power)

• P = k * CV2f
– k: constant;  C: capacitance of wires;  V: voltage;  f: switching 

frequency
• Power reduction methods

– Reduce voltage: But slower, and there’s a limit
– What else?

en
er

gy
 (1

=v
al

ue
 in

 2
00

1)

8

4

2

1

battery energy
density

energy
demand

2001 03 05 07 09
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Power Optimization using Clock Gating
• P = k * CV2f
• Much of a chip’s switching f (>30%) 

due to clock signals
– After all, clock goes to every register 
– Portion of FIR filter shown on right

• Notice clock signals n1, n2, n3, n4

• Solution: Disable clock switching to 
registers unused in a particular state

– Achieve using AND gates
– FSM only sets 2nd input to AND gate to 

1 in those states during which register 
gets loaded

• Note: Advanced method, usually done 
by tools, not designers

– Putting gates on clock wires creates 
variations in clock signal (clock skew);
must be done with great care

yreg

c2c1c0xt0 xt1 xt2X

x_ld

y_ld

clk n2 n3 n4n1

yreg

c2c1c0xt0 xt1 xt2X

x_ld

y_ld

n2 n3 n4
n1

clk

clk

n1, n2, n3

n4

Much 
switching 
on clock 
wires

clk
n1, n2, n3

n4

Greatly reduced 
switching – less power

s1

s5

a
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Power Optimization using Low-Power Gates on 
Non-Critical Paths

• Another method: Use low-power gates
– Multiple versions of gates may exist

• Fast/high-power, and slow/low-power, versions
– Use slow/low-power gates on non-critical paths

• Reduces power, without increasing delay

g
f

e
d

c

a
b

F1

26 transistors
3 ns delay
5 nanowatts power

1/1

1/1

1/1

1/1

1/1

nanowatts
nanoseconds g

f

e
d

c

a
b

F1

26 transistors
3 ns delay
4 nanowatts power

2/0.5

1/1

2/0.5

1/1

1/1

high-power gates

low-power gates
on noncritical path

low-power
gates

delay

p

o

w

er

si
ze


